470 likes | 768 Views
Chapter 6: Aqueous Phase Reactions. Introduction Gas-liquid equilibrium: Henry’s law Oxidations of SO2 Nitrate and nitrite formations Close and open systems. Liquid water in the atmosphere 大氣中水蒸氣質量濃度與溫 度 ,RH 成函數關係. Cloud type and Liquid Water Content.
E N D
Chapter 6: Aqueous Phase Reactions • Introduction • Gas-liquid equilibrium: Henry’s law • Oxidations of SO2 • Nitrate and nitrite formations • Close and open systems
Liquid water in the atmosphere 大氣中水蒸氣質量濃度與溫 度,RH成函數關係
Cloud type and Liquid Water Content wL (vol water/vol air)=10-6 L(g m-3) cloudwater wL =5*10-8~3*10-6 g m-3 fog wL =0.02~0.5 g m-3
Absorption equilibria and Henry’s Law • A(g) ↔ A(aq) (6.2) • [A(aq)]=HApA (6.3) • (6.4) (6.5) • : the reaction enthalpy
Gas/Aqueous-Phase Distribution Factor caq:aqueous-phase mass concentration cg :gas-phase mass concentration 假設達到Henry’s law平衡 fA=10-6HARTL=HARTwL (6.7) (6.8) (6.9)
Aqueous-Phase Chemical Equilibria1. Water • H2O↔H++OH- (6.10) • (6.11) • Kw=[H+][OH-] (6.12) • pH=-log10[H+] (6.13)
2. Carbon Dioxide/Water Equilibrium • CO2(g) + H2O ↔ CO2·H2O (6.14) • CO2·H2O↔ H+ + HCO3- (6.15) • HCO3-↔ H+ + CO3- (6.16) • (6.17) • (6.18) • (6.19)
(6.23) • (6.24) • [CO2T]=H*CO2pco2 (6.25) • H*CO2 > HCO2 (6.26)
[H+]=[OH-]+[HCO3-]+2[CO32-] (6.27) (6.28) • [H+]3-(Kw+HCO2Kc1pCO2)[H+] -2HCO2Kc1KC2pCO2=0 (6.29) 若已知T,即可決定Kw,HCO2,Kc1,Kc2,pCO2 就可以求出pH值
3. Sulfur Dioxide • SO2(g) + H2O ↔ SO2·H2O (6.30) • SO2·H2O↔ H+ + HSO3- (6.31) • HSO3-↔ H+ + SO3- (6.32) • (6.33) • (6.34) • (6.35)
4. Ammonia/Water Equilibrium • NH3 + H2O ↔ NH3·H2O (6.46) • NH3·H2O ↔ NH4+ + OH- (6.47) • (6.48) • (6.49) (6.50)
5. Nitric Acid/Water Equilibrium • HNO3(g)↔ HNO3(aq) (6.53) • HNO3(aq) ↔ NO3- +H+ (6.54) • (6.55) • [HNO3T]=[HNO3(aq)]+[NO3-] (6.56) • [HNO3(aq)]=HHNO3pHNO3 (6.57)
(6.58) (6.59) • (Kn1/[H+]) >> 1 (6.60) • (6.61)
6. Equilibrium of Other Important Atmospheric Gases • Hydrogen Peroxide H2O2(aq)↔ HO2- + H+ (6.62) (6.63) • Ozone • Oxides of Nitrogen
Formaldehyde HCHO(aq)+ H2O ↔ H2C(OH)2 (6.64) (6.65) (6.66) (6.67)
Formic and Atmospheric Acids HCOOH(aq)↔ HCOO- + H+ (6.68) • OH and HO2 Radicals HO2(aq) ↔ O2- + H+ (6.69) [HO2T]=[HO2(aq)]+[O2-] (6.70) (6.71)
Aqueous-Phase Reaction Rates • S(IV) + A(aq)↔ Products (6.72) Ra=k[S(IV)][A(aq)] (Ms-1) (6.73) Ra’=kwL[A(aq)][S(IV)]=10-6 kL[A(aq)][S(IV)] (=mol(L of air)-1s-1) (6.74) Ra”=3.6*10-6LRTRa (ppb h-1) (6.75) (%h-1) (6.76) (%h-1)(6.77) (6.78)
S(VI) to S(IV) Transformation and Sulfur Chemistry SO2·H2O pH<2 • SO2+H2O=> HSO3- 2<pH<7 SO32- 7<pH
Oxidation of S(IV) by Dissolved O3 • O3+SO2在氣相反應非常慢,但是在液相反應卻非常快 S(IV)+O3→S(VI)+O2 • 有文獻指出:S(IV)-O3反應速率隨著溶液離子強度的增加而成線性般的增加
Oxidation of S(IV) by Hydrogen Peroxide • H2O2在大氣中對S(IV)來說是很有效的氧化物之一 • H2O2比O3更容易溶於水中 • H2O2為弱電解值 • HSO3-+H2O2↔SO2OOH-+H2O • SO2OOH-+H+↔H2SO4
Oxidation of S(IV) by Organic Peroxides • HSO3-+CH3OOH+H+↔SO42-+2H++CH3OH • HSO3-+CH3C(O)OOH→SO42-+H++CH3COOH
Uncatalyzed Oxidation of S(IV) by O2 • 無Fe,Mn之摧化反應很慢,且空氣中多多少少都有這些東西存在,因此不考慮無Fe,Mn摧化的反應
Oxidation of S(IV) by O2 Catalyzed by Iron and Manganese 增加離子強度,此反應反而會受到抑制 • Fe(II)先氧化成Fe(III)再將S(IV)氧化 Fe(OH)3+3H+↔Fe3++3H2O • Fe3+濃度平衡於Fe(OH)3 Fe3++H2O↔FeOH2++H+ FeOH2++H2O↔Fe(OH)2++H+ Fe(OH)2+H2O↔Fe(OH)3(s)+H+ 2FeOH2+↔Fe2(OH)24+ • Fe,Mn兩者一起摧化,反應比單獨個別摧化之和之速度快了3~10倍
S(IV) Oxidation by the OH Radical • HSO3-+OH→SO3-+H2O • SO32-+OH→SO3-+OH- • SO3-+O2→SO5- • SO5-+HSO3-→HSO5-+SO3- • SO5-+SO3- HSO4-+SO3-+OH- • SO5-+SO5-→2SO4-+O2 • SO5-+SO5-→S2O82-+O2 • SO4-+HSO3-→SO3-+H++SO42-
Oxidation of S(IV) by Oxides of Nitrogen • 2NO2+HSO3- 3H++2NO2-+SO42- • NO2在水相中受限於微小水溶液,使得此反應對S(IV)成為次要的反應途徑 • 但在都市地區,有較高的NO2濃度則此反應 會成為重要途徑
Reaction of Dissolved SO2 with HCHO • HCHO(aq)+HSO3-→HOCH2SO3- • HCHO(aq)+SO32-→-OCH2SO3- • HOCH2SO3-+OH-→HCHO(aq)+SO32-+H2O
Aqueous-phase nitrite and nitrate reactions NOx oxidation NO2(aq)+NO2(aq) NO2-+NO3-+2H+ 6.127 NO(aq)+NO2(aq) 2NO2-+2H+ NO(aq)+OH(aq)→NO2-+H+ NO2(aq)+OH(aq)→NO3-+H+ 但是空氣中NO,NO2濃度<1nM 6.127反應速率<0.3 幾乎可忽略
Nitrogen Radicals • 在夜晚NO3radical是液相中N物種裡最有反應性的,而在白天會快速光解 • N03,N2O5極易溶於水,可能是N的主要來源 N2O5(aq)+H2O→2H++2NO3- NO3+Cl-→NO3-+Cl(aq) 但是大氣中Cl-濃度低NO3轉而與HSO3-反應 NO3(aq)+HSO3-→NO3-+H++SO3- • NO3參與許多另外的反應所產生的自由基可導致S(IV)之氧化所需之自由基連鎖反應
Aqueous-phase Organic Compounds • 與OH基反應較重要 H2C(OH)2+OH(aq) HCOOH(aq)+HO2(aq)+H2O HCOO-+OH CO2+HO2+OH- HCOOH+OH CO2+HO2+H2O
Oxygen and hydrogen chemical • O3(aq)+O2- OH+2O2+OH- 6.142 • OH radical 主要之消耗:與hydrated formaldehyde反應 與H2O2,HCOOH,S(IV) 主要之來源:O2-與O3反應,H2O2光解 次要之來源:NO3-光解,HO2氧化S(IV) • HO2 radical 其主要來源即OH之主要消耗,反之亦然 • HO2(aq)+O2- H2O2+O2+OH- 6.143 • SO5-+O2 HSO5-+OH-+O2 6.144 • S(IV)+HO2(aq)→S(VI)+OH 6.145 • S(IV)+O2- S(VI)+OH+OH- 6.146 • HCO-+O2-→HO2-+CO3- 6.147
Dynamic behavior of solutions with aqueous-phase chemical reactions 1. Closed system • [H2O2(aq)]open=HH2O2pºH2O2 6.148 6.149 6.150 • [H2O2(aq)]closed=HH2O2pH2O2 6.151 6.152
6.153 6.154 • [HNO3]total=HHNO3pHNO3 6.155 6.156 6.157 6.158
Calculation of concentration changes in a droplet with aqueous-phase reaction • [H+]+[NH4+]=[OH-]+[HSO3-]+2[SO32-]+[HSO3-]+[NO3-] [S(VI)]=[SO42-]+[HSO3-]+[H2SO4(aq)]
closed 系統H2O2,O3之消耗使得S(VI)產生較少 • 源源不絕的NH3提供更多的電中性反應在open系統中 • closed系統中由於S(IV)剩下較多,所以pH較低 • 較低的pH值使S(IV)被O3氧化速率降低 • 在closed系統中S(IV)是不斷的被消耗掉 • 在open系統中由於pH降低使得[HNO3]total降低