1 / 51

CHAPTER

Manajemen Transportasi & Logistik. CHAPTER. 3. Forecasting. Rahmi Yuniarti,ST.,MT Anni Rahimah, SAB,MAB FIA - Prodi Bisnis Internasional Universitas Brawijaya. Pengelolaan Order Pesanan. Penawaran. Permintaan. Negosiasi. Kesepakatan. Perjanjian. Manajemen Permintaan.

ofira
Download Presentation

CHAPTER

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Manajemen Transportasi & Logistik CHAPTER 3 Forecasting Rahmi Yuniarti,ST.,MT Anni Rahimah, SAB,MAB FIA - Prodi Bisnis Internasional Universitas Brawijaya

  2. Pengelolaan Order Pesanan Penawaran Permintaan Negosiasi Kesepakatan Perjanjian

  3. Manajemen Permintaan

  4. What is Forecasting? FORECAST: • A statement about the future value of a variable of interest such as demand. • Forecasts affect decisions and activities throughout an organization • Accounting, finance • Human resources • Marketing • MIS • Operations • Product / service design

  5. Uses of Forecasts

  6. I see that you willget an A this semester. Common in all forecasts • Assumes causal systempast ==> future • Forecasts rarely perfect because of randomness • Forecasts more accurate forgroups vs. individuals • Forecast accuracy decreases as time horizon increases

  7. Peramalan Permintaan

  8. “The forecast” Step 6 Monitor the forecast Step 5 Prepare the forecast Step 4 Gather and analyze data Step 3 Select a forecasting technique Step 2 Establish a time horizon Step 1 Determine purpose of forecast Steps in the Forecasting Process

  9. Forecasting Models

  10. Model Differences • Qualitative – incorporates judgmental & subjective factors into forecast. • Time-Series – attempts to predict the future by using historical data. • Causal – incorporates factors that may influence the quantity being forecasted into the model

  11. Qualitative Forecasting Models • Delphi method • Iterative group process allows experts to make forecasts • Participants: • decision makers: 5 -10 experts who make the forecast • staff personnel: assist by preparing, distributing, collecting, and summarizing a series of questionnaires and survey results • respondents: group with valued judgments who provide input to decision makers

  12. Qualitative Forecasting Models (cont) • Jury of executive opinion • Opinions of a small group of high level managers, often in combination with statistical models. • Result is a group estimate. • Sales force composite • Each salesperson estimates sales in his region. • Forecasts are reviewed to ensure realistic. • Combined at higher levels to reach an overall forecast. • Consumer market survey. • Solicits input from customers and potential customers regarding future purchases. • Used for forecasts and product design & planning

  13. Metode Peramalan Deret Waktu (Time Series Methods) • Teknik peramalan yang menggunakan data-data historis penjualan beberapa waktu terakhir dan mengekstrapolasinya untuk meramalkan penjualan di masa depan • Peramalan deret waktu mengasumsikan pola kecenderungan pemasaran akan berlanjut di masa depan. • Sebenarnya pendekatan ini cukup naif, karena mengabaikan gejolak kondisi pasar dan persaingan

  14. Langkah-langkah Peramalan Time Series (Deret Waktu) • Kumpulkan data historis penjualan • Petakan dalam diagram pencar (scatter diagram) • Periksa pola perubahan permintaan • Identifikasi faktor pola perubahan permintaan • Pilih metode peramalan yang sesuai • Hitung ukuran kesalahan peramalan • Lakukan peramalan untuk satu atau beberapa periode mendatang

  15. UKURAN AKURASI HASIL PERAMALAN Ukuran akurasi hasil peramalan yang merupakan ukuran kesalahan peramalan merupakan ukuran tentang tingkat perbedaan antara hasil peramalan dengan permintaan yang sebenarnya terjadi. Ukuran yang biasa digunakan, yaitu: • Rata-rata Deviasi Mutlak (Mean Absolute Deviation = MAD) • Rata-Rata Kuadrat Kesalahan (Mean Square Error = MSE) • Rata-rata Peramalan Kesahalan Absolut (Mean Absolute Percent Age Error = MAPE)

  16. UKURAN AKURASI HASIL PERAMALAN • Rata-rata Deviasi Mutlak (Mean Absolute Deviation = MAD) MAD merupakan rata-rata kesalahan mutlak selama periode tertentu tanpa memperhatikan apakah hasil peramalan besar atau lebih kecil dibandingkan kenyataannya. • Rata-Rata Kuadrat Kesalahan (Mean Square Error= MSE) MSEdihitung dengan menjumlahkan kuadrat semua kesalahan peramalan pada setiap periode dan membaginya dengan jumlah periode peramalan. • Rata-rata Peramalan Kesahalan Absolut (Mean Absolute Percent Age Error + MAPE) MAPE merupakan kesalahan relatif. MAPE menyatakan persentase kesalahan hasil peramalan terhadap permintaan aktual selama periode tertentu yang akan memberikan informasi persentase kesalahan terlalu tinggi atau terlalu rendah.

  17. Forecast Error • Bias - The arithmetic sum of the errors • Mean Square Error - Similar to simple sample variance • MAD - Mean Absolute Deviation • MAPE – Mean Absolute Percentage Error

  18. Example

  19. Controlling the Forecast • Control chart • A visual tool for monitoring forecast errors • Used to detect non-randomness in errors • Forecasting errors are in control if • All errors are within the control limits • No patterns, such as trends or cycles, are present

  20. Controlling the forecast

  21. Quantitative Forecasting Models • Time Series Method • Naïve • Whatever happened recently will happen again this time (same time period) • The model is simple and flexible • Provides a baseline to measure other models • Attempts to capture seasonal factors at the expense of ignoring trend

  22. Uh, give me a minute.... We sold 250 wheels last week.... Now, next week we should sell.... Naive Forecasts The forecast for any period equals the previous period’s actual value.

  23. Naïve Forecast

  24. Naïve Forecast Graph

  25. Naive Forecasts • Simple to use • Virtually no cost • Quick and easy to prepare • Easily understandable • Can be a standard for accuracy • Cannot provide high accuracy

  26. Techniques for Averaging • Moving average • Weighted moving average • Exponential smoothing

  27. n Ai  MAn = i = 1 n Moving Averages • Moving average – A technique that averages a number of recent actual values, updated as new values become available. • The demand for wheels in a wheelstore in the past 5 weeks were as follows. Compute a three-period moving average forecast for demand in week 6. 83 80 85 90 94

  28. Moving average & Actual demand

  29. Moving Averages

  30. Moving Averages Forecast

  31. Moving Averages Graph

  32. Moving Averages • Weighted moving average – More recent values in a series are given more weight in computing the forecast. • Assumes data from some periods are more important than data from other periods (e.g. earlier periods). • Use weights to place more emphasis on some periods and less on others. Example: • For the previous demand data, compute a weighted average forecast using a weight of .40 for the most recent period, .30 for the next most recent, .20 for the next and .10 for the next. • If the actual demand for week 6 is 91, forecast demand for week 7 using the same weights.

  33. Weighted Moving Average

  34. Weighted Moving Average

  35. Exponential Smoothing • ES didefinisikan sebagai: Keterangan: Ft+1 = Ramalan untuk periode berikutnya Dt = Demand aktual pada periode t Ft = Peramalan yg ditentukan sebelumnya untuk periode t a = Faktor bobot • a besar, smoothing yg dilakukan kecil • a kecil, smoothing yg dilakukan semakin besar • a optimum akan meminimumkan MSE, MAPE

  36. Exponential Smoothing • Weighted averaging method based on previous forecast plus a percentage of the forecast error • A-F is the error term,  is the % feedback Ft = Ft-1 + (At-1 - Ft-1)

  37. Exponential Smoothing Data

  38. Exponential Smoothing

  39. Exponential Smoothing

  40. Trend , SeasonalityAnalysis Time Series Methods • Trend - long-term movement in data • Cycle – wavelike variations of more than one year’s duration • Seasonality- short-term regular variations in data • Random variations - caused by chance

  41. Pola Kecenderungan Data Historis Penjualan

  42. Techniques for Trend • Develop an equation that will suitably describe trend, when trend is present. • The trend component may be linear or nonlinear • We focus on linear trends

  43. Parabolic Exponential Growth Common Nonlinear Trends

  44. Ft Ft = a + bt 0 1 2 3 4 5 t Linear Trend Equation • Ft = Forecast for period t • t = Specified number of time periods • a = Value of Ft at t = 0 • b = Slope of the line

  45. Example • Sales for over the last 5 weeks are shown below: Week: 1 2 3 4 5 Sales: 150 157 162 166 177 • Plot the data and visually check to see if a linear trend line is appropriate. • Determine the equation of the trend line • Predict sales for weeks 6 and 7.

  46. Line chart

  47. n (ty) - t y    b = 2 2 n t - ( t)   y - b t   a = n Calculating a and b

  48. Linear Trend Equation Example

  49. 5 (2499) - 15(812) 12495 - 12180 b = = = 6.3 5(55) - 225 275 - 225 812 - 6.3(15) a = = 143.5 5 Ft= 143.5 + 6.3t Linear Trend Calculation

  50. Linear Trend plot

More Related