1 / 9

Section 2- 2, Part 2: Inverse & Contrapositive

Section 2- 2, Part 2: Inverse & Contrapositive. Objectives: Write the inverse and contrapositive of conditional statements. Recall. Forms of a Conditional Statement. Converse. Inverse. Contrapositive. Biconditional. Symbolic Negation (~p OR ~q).

oki
Download Presentation

Section 2- 2, Part 2: Inverse & Contrapositive

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Section 2-2, Part 2: Inverse & Contrapositive • Objectives: • Write the inverse and contrapositive of conditional statements Recall

  2. Forms of a Conditional Statement Converse Inverse Contrapositive Biconditional

  3. Symbolic Negation (~p OR ~q) • Negation of a statement has the opposite truth value. Statement: ABC is an obtuse angle. Negation: ABC is not an obtuse angle. Statement: Lines m and n are not perpendicular Negation: Lines m and n are perpendicular. Use negation for INVERSE! ~

  4. Form of a Conditional Statement Symbol ~ is used to indicate the word “NOT” Inverse States the opposite of both the hypothesis and conclusion. (~p~q) If not p, then not q. Conditional: pq :Iftwo angles are vertical, thenthey are congruent. Inverse: ~p~q:Iftwo angles are not vertical, thenthey are not congruent.

  5. Inverse • Inverse of a conditional negates BOTH the hypothesis and conclusion. Conditional If a figure is a square, then it is a rectangle. NEGATE BOTH Inverse If a figure is NOT a square, then it is NOT a rectangle.

  6. Form of a Conditional Statement Contrapositive (~q~p) If not q, then not p. Conditional: pq : Iftwo angles are vertical, thenthey are congruent. Contrapositive: ~q~p:Iftwo angles are not congruent, thenthey are not vertical. Switch the hypothesis and conclusion & state their opposites. (~q~p) (Do Converse and Inverse)

  7. Contrapositive • Contrapositive switches hypothesis and conclusion AND negates both. • A conditional and its contrapositive are equivalent. They have the same truth value). Conditional If a figure is a square, then it is a rectangle. SWITCH AND NEGATE BOTH Contrapositive If a figure is NOT a rectangle, then it is NOT a square.

  8. Lewis Carroll, the author of Alice's Adventures in Wonderland and Through the Looking Glass, was actually a mathematics teacher.   As a hobby, Carroll wrote stories that contain amusing examples of logic.  His works reflect his passion for mathematics Lewis Carroll’s “Alice in Wonderland” quote: "You might just as well say," added the Dormouse, who seemed to be talking in his sleep, "that 'I breathe when I sleep' is the same thing as 'I sleep when I breathe'!" Translate into a conditional: If I am sleeping, then I am breathing. If I am not sleeping, then I am not breathing. Inverse of a conditional: If I am not breathing, then I am not sleeping. Contrapositive of a conditional:

  9. Summary

More Related