150 likes | 326 Views
Distributed Hash Tables (DHT) Jukka K. Nurminen. *Adapted from slides provided by Stefan G ötz and Klaus Wehrle (University of T übingen ). Distributed Management and Retrieval of Data. I want item „D“. Where can I find „D“?. I have item „D“. Where to place „D“?. Data item „D“. D. ?. ?.
E N D
Distributed Hash Tables (DHT)Jukka K. Nurminen *Adapted from slides provided by Stefan Götz and Klaus Wehrle (University of Tübingen)
Distributed Management and Retrieval of Data I want item „D“.Where can I find „D“? I have item „D“.Where to place „D“? Data item „D“ D ? ? ? distributed system 12.5.7.31 peer - to - peer.info planet - lab.org berkeley.edu 89.11.20.15 95.7.6.10 86.8.10.18 7.31.10.25 • Essential challenge in (most) Peer-to-Peer systems? • Location of a data item among systems distributed • Where shall the item be stored by the provider? • How does a requester find the actual location of an item? • Scalability: keep the complexity for communication and storage scalable • Robustness and resilience in case of faults and frequent changes 2 2008-11-05 /Jukka K. Nurminen
The Architectures of 1st and 2nd Gen. P2P 1st Gen. 2nd Gen. 3 2008-11-05 /Jukka K. Nurminen
Addressing in Distributed Hash Tables 3485 -610 611 -709 1008 -1621 1622 -2010 2011 -2206 2207-2905 2906 -3484 (3485 -610) 2m-1 0 H(Node Y)=3485 Often, the address space is viewed as a circle. Y X Data item “D”: H(“D”)=3107 H(Node X)=2906 • Step 1: Mapping of content/nodes into linear space • Usually: 0, …, 2m-1 >> number of objects to be stored • Mapping of data and nodes into an address space (with hash function) • E.g., Hash(String) mod 2m: H(„my data“) 2313 • Association of parts of address space to DHT nodes 4 2008-11-05 /Jukka K. Nurminen
Step 2: Routing to a Data Item • put (key, value) • value = get (key) • Routing to a K/V-pair • Start lookup at arbitrary node of DHT • Routing to requested data item (key) H(„my data“) = 3107 1622 Node 3485 manages keys 2907-3485, 1008 2011 2207 709 ? 611 2906 3485 Key = H(“my data”) Initial node(arbitrary) (3107, (ip, port)) Value = pointer to location of data 5 2008-11-05 /Jukka K. Nurminen
Step 2: Routing to a Data Item • Getting the content • K/V-pair is delivered to requester • Requester analyzes K/V-tuple(and downloads data from actual location – in case of indirect storage) In case of indirect storage: After knowing the actual Location, data is requested H(„my data“) = 3107 Get_Data(ip, port) 1622 1008 2011 2207 709 ? 611 2906 3485 Node 3485 sends (3107, (ip/port)) to requester 6 2008-11-05 /Jukka K. Nurminen
Chord 7 2008-11-05 /Jukka K. Nurminen
Chord: Topology Identifier Node 6 X Key 0 1 7 6 2 5 3 4 2 • Keys and IDs on ring, i.e., all arithmetic modulo 2^160 • (key, value) pairs managed by clockwise next node: successor 1 successor(1) = 1 Chord Ring successor(6) = 0 6 2 successor(2) = 3 8 2008-11-05 /Jukka K. Nurminen
Chord: Primitive Routing 0 1 7 Key 6? 6 2 5 3 4 • Primitive routing: • Forward query for key x until successor(x) is found • Return result to source of query • Pros: • Simple • Little node state • Cons: • Poor lookup efficiency:O(1/2 * N) hops on average(with N nodes) • Node failure breaks circle 6 Node 0 1 2 9 2008-11-05 /Jukka K. Nurminen
Chord: Routing finger table keys i start succ. 6 0 0 1 2 1 2 4 1 3 0 1 finger table keys 7 i start succ. 1 0 1 2 2 3 5 3 3 0 6 2 5 3 finger table keys 4 i start succ. 2 0 1 2 4 5 7 0 0 0 • Chord’s routing table: finger table • Stores log(N) links per node • Covers exponentially increasing distances: • Node n: entry i points to successor(n + 2^i) (i-th finger) 10 2008-11-05 /Jukka K. Nurminen
Chord: Routing lookup (44) lookup (44) = 45 • Chord’s routing algorithm: • Each node n forwards query for key k clockwise • To farthest finger preceding k • Until n = predecessor(k) and successor(n) = successor(k) • Return successor(n) to source of query 63 60 4 56 7 54 52 13 14 49 49 16 19 45 45 44 42 42 23 39 26 37 30 33 11 2008-11-05 /Jukka K. Nurminen
Comparison of Lookup Concepts 12 2008-11-05 /Jukka K. Nurminen
Summary of DHT • Use of routing information for efficient search for content • Self-organizing system • Advantages • Theoretical models and proofs about complexity (Lookup and memory O(log N)) • Simple & flexible • Supporting a wide spectrum of applications • <Key, value> pairs can represent anything • Disadvantages • No notion of node proximity and proximity-based routing optimizations • Chord rings may become disjoint in realistic settings • No wildcard or range searches • Performance under high churn. Especially handling of node departures • Key deletion vs. refresh • Many improvements published • e.g. proximity, bi-directional links, load balancing, etc. 14 2008-11-05 /Jukka K. Nurminen
Different kinds of DHTs • Specific examples of Distributed Hash Tables • Chord, UC Berkeley, MIT • Pastry, Microsoft Research, Rice University • Tapestry, UC Berkeley • CAN, UC Berkeley, ICSI • P-Grid, EPFL Lausanne • Kademlia, Symphony, Viceroy, … • A number of uses • Distributed tracker • P2P SIP • ePOST 15 2008-11-05 /Jukka K. Nurminen