240 likes | 345 Views
Rare Bottom and Charm Decays at the Tevatron. Dmitri Tsybychev (SUNY at Stony Brook) On behalf of CDF and D0 Collaborations Flavor Physics and CP-Violation Taiwan, May 8, 2008. Rare Decays. Electroweak symmetry breaking determines flavor structure CKM matrix, FCNC, CP-violation
E N D
Rare Bottom and Charm Decays at the Tevatron Dmitri Tsybychev (SUNY at Stony Brook) On behalf of CDF and D0 Collaborations Flavor Physics and CP-Violation Taiwan, May 8, 2008
Rare Decays • Electroweak symmetry breaking determines flavor structure • CKM matrix, FCNC, CP-violation • Rare decays are instrumental probes • CKM matrix • Sizeable deviations – sign of New Physics • FCNC decays are forbidden at tree level in the SM • Rates are highly suppressed in SM • NP allows tree level processes, enhancement in loops • Look for • B0(s )→ μ+μ- • B±0(s)→ h μ+μ- • D0 → μ+μ- • D±→ π±μ+μ- D. Tsybychev
b g b g g Gluon Splitting q b Flavor Creation b g q b b q q Flavor Excitation B Physics at the Tevatron - Mechanisms for b production in pp collisions at 1.96 TeV • Total inelastic cross section at the Tevatron is ~1000 larger than b cross section • Plethora of states accessible only at the Tevatron: Bs, Bc, Λb, Ξb, Σb… • Large backgrounds suppressed by triggers that target specific decays s(bb)
Analysis Procedures • Preselection of dimuon events • Trigger • Selection optimization • Blind analysis • Avoid biases • Side-band background subtraction • Normalization to resonant decays in similar final state • Large, well-known BR in SM • Efficiency normalization • Significant signal – perform measurement • Otherwise set limit for relevant process D. Tsybychev
Isolation Flight length significance p impact parameter significance Discriminating Variables D. Tsybychev
B0(s)→μ+μ- • Br(B0s→μ+μ-) = (3.42 ± 0.54)x10-9 Buras, PLB 566, 115 (2003) • Br(B0d→μ+μ-) = (1.00 ± 0.14)x10-9 suppressed by (Vtd/Vts)2 • New Physics contribution: • MSSM ~tan6(b), for largetan(b) • SUSY with R-parity violation (RPV) • Z’ with off diagonal couplings D. Tsybychev
B0(s)→μ+μ- Selection and Optimization • Signal: MC • Background: data mass sidebands • Final selection • Likelihood ratio (D0) • Neural network (CDF) • Check selection with control samples • Misidentified muon • Same sign muons D. Tsybychev
B0(s)→μ+μ- Normalization • Combinatorial backgrounds estimated from fit in mass sidebands and propagated to signal region • BR normalized to B±→J/ψK± D. Tsybychev
B0(s)→μ+μ- Results • No excess over expected background observed B0s→μ+μ- B0d→μ+μ- CDF < 4.7x10-8 < 1.5x10-8 PRL 100,101802 (2008) D0 < 7.3x10-8 D0 Note 5344 • New HFAG average < 4.7 x10-8 @ 90% CL Most stringent to date! D. Tsybychev
B0s→μ+μ- Prospects D. Tsybychev
B(±,0)(s)→h(±,0)μ+μ- • Non resonant decays via box or penguin diagrams • BaBar/Belle: • B±u→Km+m- PRD73, 092001 (2006) • B0d→K*m+m- PRL96, 251801 (2006) • Look for B0s→fm+m- • Prediction: BR(B0s→fm+m-) =1.6x10-6 JPHYS G 29, 1103 (2003) • NP • Larger BR • Modified invariant mm mass • Modified angular distributions Fourth Generation PRD 77, 014016 (2008) D. Tsybychev
B(±,0)(s)→h(±,0)μ+μ- Observations • Remove resonant J/ψ,ψ(2S) by cutting on invariant mm mass 7.5±1.5 2.4 44.7±5.8 4.5 18.5±3.6 2.9 D. Tsybychev
B(±,0)(s)→h(±,0)μ+μ- Results BR(B0s→fm+m-) @ 90%CL CDF(hep-ex/0804.3908) < 5.0x10-6(includes uncertainty on normalization channel) D0 (PRD 74 , 031107 (2006)) < 3.2x10-6 B(±,0)(s)→h(±,0)l+l- D. Tsybychev
D0→μ+μ- • B0s→μ+μ- vs D0→μ+μ- • down quark sector vs up quark sector • Short range contribution BR~10-18 • GIM suppressed • Long range contribution BR ~ 4 x 10-13 Burdman et al. hep-ph/0112235 • Significant enhancement possible in SUSY with R-parity violation Long range SM SUSY with R-parity violation D. Tsybychev
D0→μ+μ- Analysis • Events from two-track trigger • Normalize to D0→pp to cancel acceptance and trigger effects • Background reduction by D* tag • Muon ID efficiency from J/ψ→μμ data • Muon mistag rate from D0→Kp • Background estimated from MC • Dominant background from B → μμX • Reduced by the impact parameter and lifetime significance cuts D. Tsybychev
Results BR(D0 → μ+μ-) < 4.3 x 10-7 at 90% CL CDF Note 9226 λ21kλ22k = 1.5√ BR(D0 → μ+μ-) < 9.8 × 10-4 D. Tsybychev
D+(s)→π±μ+μ- • Orthogonal to B0s→μ+μ- • Effects in up-quark sector • factors of >1000 over SM not ruled out • Long distance resonance production • BR = 1.9x10-6 • Short distance continuum production Little Higgs models with new up sector vector quark Fajfer et al. hep-ph/0511048 RPV in the up sector and not the down sector Burdman et al. hep-ph/0112235 D. Tsybychev
Resonant D+(s) Decays • Resonant production • Selection of events with m(μμ) in φ region • N(Ds+) = 254 ± 36 • N(D+) = 115 ± 31 • Statistical significance 8 for Ds+ and D+, 4.1 for D+ • First observation for Ds • First evidence for D+ • BR(D+→φπ+→μ+μ-π+) = (1.8 ± 0.5 ± 0.6) x 10-6 D. Tsybychev
Continuum D+(s) Decays • Exclude resonant φ→μμ mass region • 19 candidates in D+ window • Background expectation 25.8 ± 4.6 (p-value=0.14) • Normalize to D+→φπ+ • BR(D+→ μμπ+) < 3.9 x 10-6 @ 90% CL PRL 100, 101801(2008) D. Tsybychev
Summary • B, D hadron decays provide a Sensitive Probe of EW Symmetry Breaking & Physics Beyond the SM • Allow classes of models to be favored/ruled out • Complementary to direct searches for new particles • The CDF and DØ experiments are making major contributions to CKM measurements • World’s best limits in B,D rare decays • Complimentary to B factories • Adding more data every day • Significant reduction of New Physics parameter space • Bounds on general flavor mixing • Paving the way for LHC D. Tsybychev
The Tevatron Accelerator • World’s highest energy collider • Proton-antiproton synchrotron • Experiments CDF and DØ • Run II (2001-2010?) • s = 1.96 TeV • Current peak luminosity L~3 x 1032 cm-2s-1 • Expect up to L= ∫Ldt = 8 fb-1 integrated luminosity in Run II • Large pp cross-section • High collision rate 1.7 MHz D. Tsybychev
Data Collected D. Tsybychev
D0→μ+μ- Summary D. Tsybychev