1 / 31

O u t li ne [A I M A Ch 13 ]

O u t li ne [A I M A Ch 13 ]. U n cer ta i nt y P r ob a b ili t y S y n tax a n d S e m a n t i c s I n fe re n ce I nd e p e nd e n ce a n d B ay e s ' R u l e. Unc er t a in t y. Le t a c t i o n A t = l e a v e f o r a i rp o rt t m i nu t e s b e f o re f li g ht

oleg-talley
Download Presentation

O u t li ne [A I M A Ch 13 ]

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Outline[AIMACh13] • Uncertainty • Probability • SyntaxandSemantics • Inference • IndependenceandBayes'Rule

  2. Uncertainty • Let action At= leave for airportt minutesbeforeflight • WillAtgetmethereontime? • Problems: • 1)partialobservability(roadstate,otherdrivers'plans,etc.) • 2)noisysensors(KCBStrafficreports) • 3)uncertaintyinactionoutcomes(attire,etc.) • 4)immensecomplexityof modelingandpredictingtraffic • Hencea purely logicalapproach either • 1)risksfalsehood:A25willgetme thereon time" • or 2)leadsto conclusionsthatare too weak fordecisionmaking: “A25willgetmethereon timeifthere'sno accidentonthebridge anditdoesn'trainand my tiresremainintactetc.,etc." • (A1440 mightreasonably besaidto getmethereon timebutI'dhavetostayovernight in theairport…)

  3. Methodsfor handling uncertainty

  4. Probability • Probabilisticassertionssummarizeeffectsof • laziness:failuretoenumerateexceptions,qualications,etc. • ignorance:lackofrelevantfacts,initialconditions,etc. • SubjectiveorBayesianprobability: • Probabilities relatepropositions toone'sownstateof knowledge • e.g., • Thesearenotclaimsofa“probabilistic tendency”inthe currentsituation(butmightbe learnedfrompastexperience ofsimilarsituations) • Probabilities of propositionschangewithnewevidence: e.g., • (Analogousto logicalentailmentstatusKB╞ α,nottruth.)

  5. Making decisionsunderuncertainty • SupposeIbelievethefollowing: • Whichactiontochoose? • Dependsonmy preferencesformissing flightvs.airport cuisine,etc. • Utilitytheoryis usedtorepresentandinferpreferences • Decisiontheory=utilitytheory+ probabilitytheory

  6. Probabilitybasics

  7. Randomvariables

  8. Propositions • Thinkofa proposition as theevent (setofsamplepoints) where the propositionis true • GivenBooleanrandomvariablesAandB: • eventa =setofsamplepoints where A(ω)=trueevent¬a=setofsamplepoints where A(ω)=falseeventa ∧b=points whereA(ω)=trueandB(ω)=true • Often in AI applications, thesamplepoints aredefinedbythevalues ofa setofrandomvariables,i.e.,thesamplespaceis theCartesian product oftherangesofthevariables • WithBooleanvariables,samplepoint =propositional logic model e.g.,A=true,B=false,ora ∧¬b. • Proposition=disjunction ofatomic eventsinwhichit is true e.g.,(a ∨b)≡(¬a ∧b)∨(a ∧¬b)∨(a ∧b) • ⇒P(a ∨b) = P(¬a∧b)+ P(a ∧¬b)+P(a ∧b)

  9. Whyuseprobability? • The definitionsimply thatcertainlogicallyrelatedevents must haverelatedprobabilities • • E.g.,P(a∨b) =P(a) +P(b)- P(a∧b) • deFinetti (1931):anagentwhobetsaccordingtoprobabilitiesthatviolatetheseaxiomscanbeforcedtobetsoastolosemoneyregardlessof outcome.

  10. Syntaxfor propositions • PropositionalorBooleanrandom variables e.g.,Cavity(doI havea cavity?) • Cavity=trueis aproposition, also writtencavity • Discrete randomvariables (finiteorinfinite) • e.g.,Weatherisoneof(sunny,rain,cloudy,snow) • Weather=rainis aproposition • Valuesmustbeexhaustiveandmutuallyexclusive • Continuousrandomvariables (boundedor unbounded) e.g.,Temp=21.6;alsoallow,e.g.,Temp<22.0. • ArbitraryBooleancombinationsofbasic propositions

  11. Priorprobability • Prior orunconditionalprobabilitiesofpropositions • e.g.,P(Cavity=true)= 0:1andP(Weather=sunny)= 0:72 • correspondtobeliefpriortoarrivalofany(new)evidence • Probabilitydistributiongivesvaluesfor allpossibleassignments: • P(Weather)=(0.72,0.1,0.08,0.1)(normalized,i.e.,sumsto1) • Jointprobabilitydistributionfora setofr.v.sgivesthe • probabilityofeveryatomiceventonthoser.v.s(i.e.,everysamplepoint) • P(Weather,Cavity)= a 4 x 2matrixofvalues: • Everyquestionabouta domaincanbeansweredbythejointdistribution becauseeveryeventisa sumofsamplepoints

  12. Conditionalprobability • Conditionalorposteriorprobabilities e.g.,P(cavity|toothache)= 0.8 • i.e.,giventhattoothacheisallIknow • NOT“iftoothachethen80%chanceofcavity” • (Notationforconditionaldistributions: • P(Cavity|Toothache)=2-elementvectorof 2-elementvectors) • If weknowmore,e.g.,cavityisalsogiven,then wehave • P(cavity|toothache,cavity)=1 • Note:thelessspecificbeliefremainsvalidaftermoreevidencearrives,butisnot alwaysuseful • New evidencemay beirrelevant,allowingsimplification,e.g., • P(cavity|toothache,TeamWon)=P(cavity|toothache)=0:8 • Thiskindof inference,sanctionedby domainknowledge,iscrucial

  13. Conditionalprobability

  14. Inferenceby enumeration

  15. Inferenceby enumeration

  16. Inferenceby enumeration

  17. Inferenceby enumeration

  18. Normalization

  19. Inferenceby enumeration,contd. • Let Xbeall thevariables.Typically,wewant • theposterior joint distribution ofthequeryvariablesY • givenspecificvalues efor the evidencevariablesE • Let thehiddenvariablesbeH=X-Y -E • Then therequiredsummationofjoint entries is donebysummingout thehiddenvariables: • P(Y|Ee)∑hP(Y,Ee,Hh) • The termsinthesummationarejoint entries becauseY,E,andH • togetherexhaust thesetofrandomvariables • Obviousproblems: • Worst-case timecomplexity O(dn)whered is thelargestarity • Spacecomplexity O(dn)to store thejoint distribution • Howto find thenumbersforO(dn)entries???

  20. Independence • AandBare independentiff • P(A|B)=P(A)orP(B|A)=P(B)orP(A,B)=P(A)P(B) • P(Toothache,Catch,Cavity,Weather)= • P(Toothache,Catch,Cavity)*P(Weather) • 32 entriesreducedto12;fornindependentbiased counts,2n→n • Absoluteindependencepowerfulbutrare • Dentristryisa largefield withhundredsofvariables,noneof whichareindependent. Whattodo?

  21. ConditionalIndependence • P(Toothache,Cavity,Catch)has23 -1=7 independententries • IfI havea cavity,theprobabilitythattheprobecatchesinit doesn'tdependonwhetherIhaveatoothache: • P(catch|toothache,cavity)=P(catch|cavity) • Thesame independenceholds ifIhaven'tgotacavity: • (2)P(catch|toothache,.cavity)=P(catch|cavity) • Catchis conditionallyindependentofToothachegivenCavity: P(Catch|Toothache,Cavity)=P(Catch|Cavity) • Equivalentstatements: • P(Toothache|Catch,Cavity)=P(Toothache|Cavity) P(Toothache,Catch|Cavity)=P(Toothache|Cavity)P(Catch|Cavity)

  22. Conditionalindependencecontd. • Writeoutfull joint distributionusingchainrule: • P(Toothache,Catch,Cavity) • =P(Toothache|Catch,Cavity)P(Catch,Cavity) • =P(Toothache|Catch,Cavity)P(Catch|Cavity)P(Cavity) • =P(Toothache|Cavity)P(Catch|Cavity)P(Cavity) • I.e.,2+2 +1=5independentnumbers(equations1and2remove2) • Inmostcases,theuseofconditionalindependencereduces thesizeoftherepresentationofthejoint distributionfrom exponentialinnto linear inn. • Conditionalindependenceis ourmost basic androbustform ofknowledgeaboutuncertainenvironments.

  23. Bayes’Rule

  24. Bayes’ Ruleand conditional independence • P(Cavity|toothache∧catch) • =P(toothache∧catch|Cavity)P(Cavity) • =P(toothache|Cavity)P(catch|Cavity)P(Cavity) • Thisis anexampleofanaiveBayesmodel: • P(Cause,Effect1,...,Effectn)=P(Cause)ΠiP(Effecti|Cause) Totalnumberof parameterslinear inn

  25. WumpusWorld • Pij=trueiff[i,j]containsapit • Bij=trueiff[i,j]isbreezy • Includeonlyintheprobabilitymodel

  26. Specifyingtheprobabilitymodel

  27. Observationsandquery

  28. Usingconditionalindependence • Basicinsight:observationsareconditionallyindependentof otherhiddensquaresgivenneighboringhiddensquares • DefineUnknown=Fringe∪Other • Manipulatequeryintoa formwherewecanusethis!

  29. Usingconditionalindependence contd.

  30. Usingconditionalindependence contd.

  31. Summary • Probabilityisa rigorousformalism foruncertainknowledge • Jointprobabilitydistributionspecifiesprobabilityofevery • atomic event • Queriescanbeansweredbysummingoveratomic events • Fornontrivialdomains,wemustfinda waytoreducethejoint size • Independenceandconditionalindependenceprovidethetools

More Related