1 / 17

Overview of the Lectures

Formal Biology of the Cell Modeling, Computing and Reasoning with Constraints François Fages, Constraint Programming Group, INRIA Rocquencourt mailto:Francois.Fages@inria.fr http://contraintes.inria.fr/. Overview of the Lectures. Introduction. Formal molecules and reactions in BIOCHAM.

oleg
Download Presentation

Overview of the Lectures

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Formal Biology of the CellModeling, Computing and Reasoning with ConstraintsFrançois Fages, Constraint Programming Group, INRIA Rocquencourtmailto:Francois.Fages@inria.frhttp://contraintes.inria.fr/

  2. Overview of the Lectures • Introduction. Formal molecules and reactions in BIOCHAM. • Formal biological properties in temporal logic. Symbolic model-checking. • Continuous dynamics. Kinetics models. • Computational models of the cell cycle control [L. Calzone]. • Mixed models of the cell cycle and the circadian cycle [L. Calzone]. • Machine learning reaction rules from temporal properties. • Learning kinetic parameter values. Constraint-based model checking. • Constraint Logic Programming approach to protein structure prediction.

  3. Cell Cycle Control [Qu et al. 03] • k1 for _=>Cyclin. • k2*[Cyclin] for Cyclin=>_. • k3*[Cyclin]*[Cdc2~{p1}] for Cyclin+Cdc2~{p1}=>Cdc2~{p1}-Cyclin~{p1}. • k4p*[Cdc2~{p1}-Cyclin~{p1}] for Cdc2~{p1}-Cyclin~{p1}=>Cdc2-Cyclin~{p1}. • k4*[Cdc2-Cyclin~{p1}]^2*[Cdc2~{p1}-Cyclin~{p1}] for • Cdc2~{p1}-Cyclin~{p1}=[Cdc2-Cyclin~{p1}]=>Cdc2-Cyclin~{p1}. • k5*[Cdc2-Cyclin~{p1}] for Cdc2-Cyclin~{p1}=>Cdc2~{p1}-Cyclin~{p1}. • k6*[Cdc2-Cyclin~{p1}] for Cdc2-Cyclin~{p1}=>Cdc2+Cyclin~{p1}. • k7*[Cyclin~{p1}] for Cyclin~{p1}=>_. • k8*[Cdc2] for Cdc2=>Cdc2~{p1}. • k9*[Cdc2~{p1}] for Cdc2~{p1}=>Cdc2. • parameter(k1,0.015). parameter(k2,0.015). parameter(k3,200). • parameter(k4p,0.018). parameter(k4,180). parameter(k5,0). • parameter(k6,1). parameter(k7,0.6). parameter(k8,100). • parameter(k9,100). • present(Cdc2,1). make_absent_not_present.

  4. Cell Cycle Control [Qu et al. 2003]

  5. Constraint-Based Linear Time Logic • Constraints over concentrations and derivatives as FOL formulae over the reals: • [M] > 0.2 • [M]+[P] > [Q] • d([M])/dt < 0 • LTL operators for time X, F, G, U (no non-determinism). • F([M]>0.2) • FG([M]>0.2) • F ([M]>2 & F (d([M])/dt<0 & F ([M]<2 & d([M])/dt>0 & F(d([M])/dt<0))))

  6. Traces from Numerical Simulation • From a system of Ordinary Differential Equations • dX/dt = f(X) • Numerical integration (by Euler, Runge-Kutta, adaptive step size Runge-Kutta, Rosenbrock methods) produces a discretization of time • The trace is a linear Kripke structure: • (t0,X0), (t1,X1), …, (tn,Xn). • the derivatives can be added to the trace • (t0,X0,dX0/dt), (t1,X1,dX1/dt), …, (tn,Xn,dXn/dt). • Equality x=v true if xi≤v & xi+1≥v or if xi≥v & xi+1≤v (Rolle’s theorem!)

  7. Constraint-Based LTL (Forward) Model Checking • Hypothesis 1: the initial state is completely known • Hypothesis 2: the formula can be checked over a finite period of time [0,T] • Simple algorithm based on the trace of the numerical simulation: • Run the numerical simulation from 0 to T producing values at a finite sequence of time points • Iteratively label the time points with the sub-formulae of f that are true: • Add f to the time points where a FOL formula f is true, • Add F f(X f) to the (immediate) previous time points labeled by f, • Add f1 U f2to the predecessor time points of f2 while they satisfy f1, • Add G f to the states satisfying f until T (optimistic abstraction…)

  8. Model-Checking Specific First-Order LTL Formulae • Let us introduce the time variable t • We can model-check a First-Order Logic LTL formula such as • period(A,75) defined as • T v F(T = t & [A] = v & d([A])/dt > 0 & X(d([A])/dt < 0) & F(T = t + 75 & [A] = v & d([A])/dt > 0 & X(d([A])/dt < 0)))

  9. Example in Qu’s Model of the Cell Cycle • K1=0, K5u=0

  10. Learning Parameter Values from LTL Specification • ? learn_parameter([k5u,k1],[(0,10),(0,500)], 20, oscil(CycB-CDK~{p1},2,10.0),300). • parameter(k5u,0.5). parameter(k1,350).

  11. Learning Parameter Values from LTL Specification • ? learn_parameter([k5u,k1],[(0,10),(0,500)], 20, period(CycB-CDK~{p1},75), 300). • parameter(k5u,2). parameter(k1,200).

  12. Backward Constraint-based Model Checking • Reason backward from the set of states satisfying a formula • to the set of initial states for which the formula is true. • Makes it possible to reason with a partially know initial state. • Approximate set of states with constraints: polyhedrons defined by linear constraints.

  13. Hybrid (Continuous-Discrete) Dynamics • Gene X activates gene Y but above some threshold gene Y inhibits X. • 0.1*[X] for • _ =[X]=> Y. • if [Y]<0.8 then 0.1 for • _ => X. • 0.2*[X] for • X => _. • absent(X). absent(Y).

  14. Translation to Constraint Logic Programs over Reals • Hybrid Differential Equation System: • dx/dt = 0.1 – 0.2*x if y < 0.8 dx/dt = – 0.2*x if y ≥ 0.8 • dy/dt = 0.1*x • (Concurrent) transition system of the trace using Euler’s method: • y < 0.8  x’ = x + dt*(0.1-0.2*x) , y’ = y + dt*0.1*x • y ≥ 0.8  x’ = x + dt*(0.1-0.2*x) , y’ = y + dt*0.1*x • Initial condition: x=0, y=0. • Translation into a Constraint Logic Program over the reals (dt=1): • Init :- X=0, Y=0, p(X,Y). • p(X,Y):- X>=0, Y>=0, Y<0.8, X1=X-02*X+01, Y1=Y+01*X, p(X1,Y1). • p(X,Y):- X>=0, Y>=0, Y>=0.8, X1=X-02*X, Y1=Y+01*X, p(X1,Y1).

  15. Constraint-based CTL Backward Model Checking Theorem [Delzanno Podelski 99] EF(f)=lfp(TP{p(x):-f}), EG(f)=gfp(TPf). Safety property AG(f) iff EF(f) iff initlfp(TP{f}) Liveness property AG(f1AF(f2)) iff initlfp(TPf1gfp(T P{f2} ) ) Deductive Model Checking DMC system [Delzanno 00] Implemented in Sicstus-Prolog CLP(Herbrand,Real,Boolean) Fourier-Motzkin elimination and Simplex algorithm.

  16. Constraint-based Backward Reasoning in DMC • r(init, p(s_s,A,B), {A=0,B=0}). • r(p(s_s,A,B), p(s_s,C,D), {A>=0,B>=0.8,C=A-02*A,D=B+01*A}). • r(p(s_s,A,B), p(s_s,C,D), {A>=0,B>=0,B<0.8, • C=A-02*A+01,D=B+01*A}). • ? prop(P,S). • P = unsafe, S = p:s*(x>=0.6) • ? ti. • Property satisfied. Execution time 0 • ? ls. • s(0, p(s_s,A,_), {A>=0.6}, 1, (0,0)).

  17. Constraint-based Backward Simulation in DMC • ? prop(P,S). • P = unsafe, S = p:s*(x>=0.2) ? • ? ti. • Property NOT satisfied. Execution time 1.5 • ? ls. • s(0, p(s_s,A,_), {A>=0.2}, 1, (0,0)). • s(1, p(s_s,A,B), {B<0.8,B>=-0,A>=0.19387755102040816}, 2, (2,1)). • … • s(26, p(s_s,A,B), {B>=0,A>=0, • B+0.1982676351105516*A<0.7741338175552753}, 27, (2,26)). • s(27, init, {}, 28, (1,27)).

More Related