250 likes | 487 Views
Physical equilibria : pure substances. 자연과학대학 화학과 박영동 교수. Physical equilibria : pure substances. 5.1 The thermodynamics of transition 5.1.1 The condition of stability 5.1.2 The variation of Gibbs energy with pressure 5.1.3 The variation of Gibbs energy with temperature
E N D
Physical equilibria: pure substances 자연과학대학 화학과 박영동 교수
Physical equilibria: pure substances 5.1 The thermodynamics of transition 5.1.1 The condition of stability 5.1.2 The variation of Gibbs energy with pressure 5.1.3 The variation of Gibbs energy with temperature 5.2 Phase diagrams 5.2.4 Phase boundaries 5.2.5 The location of phase boundaries 5.2.6 Characteristic points 5.2.7 The phase rule 5.2.8 Phase diagrams of typical materials 5.2.9 The molecular structure of liquids
The condition of stability When an amount dnof the substance changes from phase 1 with Gm(1) to phase 2 with Gm(2), • Gi = n1Gm(1) +n2Gm(2) • ΔG< 0 to be spontaneous • if Gm(2) > Gm(1), dn < 0; 2→1 • if Gm(2) < Gm(1), dn> 0;1→2 • if Gm(2) = Gm(1), at equilibrium • n2 + dn n2 • ΔG= {Gm(2) − Gm(1)}dn phase 2 phase 2 n1 n1 - dn Gf = (n1 - dn)Gm(1) +(n2+dn)Gm(2) phase 1 phase 1
Pressure dependence of G G = H – TS dG = dH – TdS – SdT = Vdp - SdT = V For liquid or solid, ΔG = VΔp For vapor, ΔG = ∫Vdp = nRT∫(1/p)dp =nRTln(pf/pi) ΔGm=RT ln(pf/pi) ch05f01
Standard Gibbs Energy, ΔG⦵(p) = V ch05f02
Calculate the Vapor pressure increase of water, when the pressure is increased by 10 bar (Δp = 1.0 × 10 6 Pa) at 25°C. water: density 0.997 g cm-3at 25°C , molar volume 18.1 cm3 mol-1. Gm,i(g) Gm,f(g) vapor, pi vapor, pf Gm,i(l) Gm,f(l) water, p1 = 1 bar water, p2= 11 bar
Temperature dependence of G G = H – TS dG = dH – TdS – SdT = Vdp - SdT = -S For liquid or solid, ΔGm=-Sm ΔT 1. Sm> 0, so G will decrease as T increases. 2. Sm(s) < Sm(l) <<Sm(g) ch05f03
Phase Diagram E D C B A H F G H G F ch05f05
Vapor pressure ch05f06
Vapor pressure and Temperature ch05f07
Cooling and Thermal Analysis ch05f05
The location of phase boundaries and Clapeyron equation dGm(1) = Vm(1)dp − Sm(1)dT dGm(2) = Vm(2)dp − Sm(2)dT dGm(1) = dGm(2), ch05f09
(a) Use the Clapeyron equation to estimate the slope of the solid–liquid phase boundary of water given the enthalpy of fusion is 6.008 kJ mol−1 and the densities of ice and water at 0°C are 0.916 71 and 0.999 84 g cm−3, respectively. Hint: Express the entropy of fusion in terms of the enthalpy of fusion and the melting point of ice. (b) Estimate the pressure required to lower the melting point of ice by 1°C.
Usual and Unusual Substances ch05f13
The phase rule, F=C-P+2 ch05f14
Water - phase diagram ch05f15
Water ch05f16
carbon dioxide ch05f18
helium-4 superfluid flows without viscosity ch05f19
열역학 제1법칙은 많은 사실에 적용된다. 전압이 1.2V 인 어떤 건전지가 있다. 이 전지가 1A의 전류로 1시간 동안 소형 모터를 작동하는데 사용되었다. • 이 건전지의 일을 계산해 보시오. • 이 건전지의 내부에너지 변화를 계산해 보시오.
다음과 같은 관계가Cp와 Cv사이에 성립한다. 이는 또한 다음과 같이 표현할 수도 있다. 이 사실을 이용하여 van der Waals 기체에 대하여 다음 사실을 밝히고, 이 값을 CO2기체에 대하여 25℃, 1기압에서 계산해 보시오.