1 / 10

帶鋸床機切削力模型

帶鋸床機切削力模型. 班級 : 自控四甲 組員 :49812030 陳勝煒 49812097 高廉傑 指導老師 : 沈毓泰. 介紹. 鋸床為原料加工的機械,並構成機械工廠最重要的機床工具。 帶鋸機被廣泛使用,原因如下:具有切割效率高、切割的切縫小、進給速率可以變化、可處理大尺寸公件。. 前言. 帶鋸床銑削過程是相似的,因為它涉及多點切割,以評估具體的切割壓力,所以不是一件容易的事。 例如 : 在一定的切削速率下,隨著切口的負 荷增加,會引起負荷變動的震動,震動影響切割的切縫,並影響到切割尺寸的表面粗糙度及耐受性. 板料厚度.

olin
Download Presentation

帶鋸床機切削力模型

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 帶鋸床機切削力模型 班級:自控四甲 組員:49812030陳勝煒 49812097高廉傑 指導老師:沈毓泰

  2. 介紹 • 鋸床為原料加工的機械,並構成機械工廠最重要的機床工具。 • 帶鋸機被廣泛使用,原因如下:具有切割效率高、切割的切縫小、進給速率可以變化、可處理大尺寸公件。

  3. 前言 • 帶鋸床銑削過程是相似的,因為它涉及多點切割,以評估具體的切割壓力,所以不是一件容易的事。 例如:在一定的切削速率下,隨著切口的負 荷增加,會引起負荷變動的震動,震動影響切割的切縫,並影響到切割尺寸的表面粗糙度及耐受性

  4. 板料厚度 • 帶鋸床中,每齒進給的切削深度是相等的,因為它們都在相同的方向上測量。 • 取決於進給速度和切削速度,並且可以由下面的表達式確定。其中ti是切削深度,p為連續的齒之間的距離,f是在進給速率,並且n是切削速度。

  5. 具體切削壓力 • 如圖被定義為X方向的力,也就是正常的齒面的法向切削力。沿Z方向是徑向的工具面,並朝向下方。Y方向,工具面外側 。 • 具體的的切割壓力和特定的切削係數,如下所示: 其中Fx, Fy和Fz的每個牙的X,Y,Z方向分別平均切削力。

  6. 切割實驗 • 如圖示臥式帶鋸機在實驗中,測量三向切削力,一個工具測力計被安裝在鋸上,夾持工件在測功機上跑。從刀具測力計的切削力信號由電荷放大器放大,通過A / D轉換由計算機計算。 實驗設置。Saw blade=鋸片 Workpiece=工件 Fixture=夾具 Charge amp=電荷放大器 A / D converter= A/ D轉換​​器

  7. 具體切削壓力建模 • 為了預測切割力,模型建立具體切割壓力。 • 模擬一個特定的切割壓力,以下方程式,表示特定的切割壓力和未變形的芯片面積,其中a和b是常數,A是未變形的芯片面積之間的關係。

  8. 多點切削模型 • 在多點切割,切削力模型是好的,但為了更精確地預測切削力,齒與齒產生的跳動和頻帶的振動也應被考慮。 • 多點切割,可以預測乘以總嚙合的齒數由單點切削的切削力。

  9. 結論 • 機械模型可以預測切削力 • 切削力模型是建立在特定的切割壓力。 • 進一步的工作應該考慮非均勻的牙齒形狀,橫向振動的鋸片,驅動輪的和不完善的平衡,更精確的預測切削力。

  10. 參考文獻 • [1] P.F. Ostwald, J. Munoz, Manufacturing processes and systems, John Wiley and Sons, Inc., 1997. • [2] A.G. Ulsoy, C.D. Morte, Vibration of wide band saw blades, ASME Journal of Engineering for Industry 104 • (1982) 71–78. • [3] J.F. Carlin, F.C. Appl, H.C. Bridwell, R.P. Dubois, Effects of tensioning on buckling and vibration of circular • saw blades, ASME Journal of Engineering for Industry February (1975) 37–48. • [4] H. Chandrasekaran, S. Svensson, M. Nissle, Tooth chipping during power hack sawing and the role of saw material • characteristics, Annals of the CIRP 36 (1) (1987) 27–31. • [5] H. Chandrasekaran, H. Thoors, H. Hellbergh, L. Johansson, Tooth chipping during band sawing of steel, Annals • of the CIRP 41 (1) (1992) 107–111. • [6] M. Sarwar, D. Gillibrand, S.R. Bradbury, Forces, surface finish and friction characteristics in surface engineered • single- and multi-point cutting edges, Surface and Coating Technology 49 (1991) 443–450. • [7] W.M.M. Hales, M. Sarwar, Geometrical parameters affecting hacksaw blade performance, Ninth International • Conference on Production Engineering Research, Cincinatti, 1987, pp. 1802–1810. • [8] M. Sawar, S.R. Bradbury, M. Dinsdale, An approach to computer aided band saw teeth testing and design, Proceedings • of the Fourth National Conference on Production Research, 1988, pp. 494–501. • [9] W.E. Henderer, J.D. Boor, J.R. Holston, Estimation of cutting forces in band sawing metals, Transactions of • NAMRC 24 (1996) 33–38. • [10] M.E. Martellotti, An analysis of the milling process, Transactions of ASME 63 (1941) 667. • [11] M.E. Martellotti, An analysis of the milling process. Part II: Down milling, Transaction of ASME 67 (1945) 233. • [12] F. Koenigsberger, A.J.P. Sabberwal, An investigation into the cutting force pulsation during milling operation, • International Journal of Machine Tool Design and Research 1 (1961) 15. • [13] J. Tlusty, P. MacNeil, Dynamics of cutting forces in end-milling, Annals of CIRP 24 (1) (1975) 21–25. • [14] W.A. Kline, R.E. DeVor, J.R. Lindberger, The prediction of cutting forces in end milling with application to • cornering cut, International Journal of Machine Tool Design and Research 22 (1) (1982) 7–22. • [15] B.K. Fussell, K. Srinivasan, An investigation of the end-milling process under varying machining conditions, • ASME Journal of Engineering for Industry 111 (1989) 27–36. • [16] H.J. Fu, R.E. DeVor, S.G. Kapoor, A mechanistic model for the prediction of the force system in face milling • operation, ASME Journal of Engineering for Industry 106 (1984) 81–88. • [17] E.J.A. Armarego, N.P. Deshpande, Computerized predictive cutting models for forces in end-milling including • eccentricity effects, Annals of CIRP 38 (1) (1989) 45–49. • [18] H.Y. Feng, C.H. Menq, The prediction of cutting forces in the ball-end milling processes. Part 1: Model formation • and model building procedure, International Journal of Machine Tools Manufacture 34 (5) (1994) 697–710. • [19] H.Y. Feng, C.H. Menq, The prediction of cutting forces in the ball-end milling processes. Part 2: Cut geometry • analysis and model verification, International Journal of Machine Tools Manufacture 34 (5) (1994) 711–720

More Related