1 / 9

LINEAR PROGRAMMING

LINEAR PROGRAMMING. Classic Types of Constrained Decision Problems 1. Product Mix 2. Ingredient Mix 3. Transportation 4. Assignment 5. Time Period. RECOGNITION. CHARACTERISTICS OF LP PROBLEMS 1. Single, well-defined objective 2. Alternative courses of action

Download Presentation

LINEAR PROGRAMMING

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LINEAR PROGRAMMING Classic Types of Constrained Decision Problems 1. Product Mix 2. Ingredient Mix 3. Transportation 4. Assignment 5. Time Period

  2. RECOGNITION CHARACTERISTICS OF LP PROBLEMS 1. Single, well-defined objective 2. Alternative courses of action 3. Achievement of the objective must be constrained by scarce resources or other restraints 4. The objective and each of the constraints must be expressible as linear, mathematical functions

  3. FORMULATION Max Z= objective fn. eq. (Min) s.t. constraint eq. 1 constraint eq. 2 etc. nonnegativity condition

  4. FORMULATIONEXAMPLE Max Z= 5x +2y s.t. 10x +4y < 445 3x + 2y > 230 5x - 4y = 125 x,y > 0

  5. LP TERMINOLOGY • Objective fn.--the mathematical function representing our objective which is being optimized. • Constraints--restrictions on our solution • Decision variables--variables of the obj. fn. and constraint eqs. • Feasible solution space--solutions for which all the constraints are satisfied

  6. LP TERMINOLOGY • Optimal Solution--a feasible solution that has the most favorable value of the objective function.

  7. GRAPHICAL LP SOLUTION OUTLINE • Formulate objective fn. and constraint eqs. • Plot constraints--treat as equalities initially • Determine feasible solution space • Determine optimal solution --Enumeration Method --Objective Fn. Family of Parallel Lines

  8. ENUMERATION METHOD • Relies on the fact that feasible solution space is a CONVEX SET • Identify corner (kink) points on the outer boundary of the feasible solution space • Plug coordinates of corner points into objective function • Select corner point with the best obj. fn. value (z) as the optimal solution point

  9. OBJECTIVE FUNCTION FAMILY OF PARALLEL LINES • Assume a value for Z and plot that member of the family • Assume another value for Z and plot it • Note the lines are parallel to each other • If maximizing, find the highest member of this family of lines just tangent to a final pt. in the feasible space. It is the optimum. • If minimizing, find the smallest member just tangent , it is the optimum.

More Related