500 likes | 639 Views
HBr: F 1 D 2 (v´=1) <-> V(v´=m+7) interaction: W 12 determination from line shifts: agust,heima,...June11/Peaks of F1 and V(m+7) detlta2 for HCl state- 141211 jlak.xls agust,www,....June11/PPT- 141211 aka.ppt agust,heima,...June11/PXP- 141211 ak.pxp
E N D
HBr: F1D2(v´=1) <-> V(v´=m+7) interaction: W12 determination from line shifts: agust,heima,...June11/Peaks of F1 and V(m+7) detlta2 for HCl state-141211jlak.xls agust,www,....June11/PPT-141211aka.ppt agust,heima,...June11/PXP-141211ak.pxp agust,heima,...June11/HBr 79040_80120-151211.pxpagust,heima,...June11/Peaks of F1 and V(m+7) detlta2 for HCl state-161211jlak.xlsagust,heima,...June11/PXP-161211ak.pxp agust,heima,...June11/Overview spectra-131211hrh-291211ak.pxpagust,heima,...June11/PXP-291211ak.pxp agust,heima,...Jan12/ Peaks of F1 and V(m+7) detlta2 for HCl state-161211jlak-020112ak.xlsagust,heima,...Jan12/ Overview spectra-131211hrh-020112ak.pxp
agust,heima,...June11/Peaks of F1 and V(m+7) detlta2 for HCl state-141211jlak.xls
DE(J´,J´-1) derived from Q lines of F1D2 Clear deviations from linearity J´ J´ agust,heima,...June11/PXP-141211ak.pxp
ERGO: W12 can be derived according to http://www3.hi.is/~agust/rannsoknir/rempi/hcl/Jan11/PDF-020111ak.pdf And http://www3.hi.is/~agust/rannsoknir/rempi/hcl/Jan11/PPT-190111ak.ppt
DE(J´,J´-1) Coefficient values ± one standard deviation a = 0.60454 ± 0.0266 b = 16.142 ± 0.00488 J´ agust,heima,...June11/PXP-141211ak.pxp
DE(J´,J´-1) Coefficient values ± one standard deviation a = 0.6369 ± 0.0704 b = 15.713 ± 0.0108 J´ agust,heima,...June11/PXP-141211ak.pxp
DE(J´,J´-1) V(v´=m+7) DE(J´,J´-1)79Br+ 8.31779 17.0272 27.4199 36.0875 V DE 81Br+ 7.99516 16.1824 26.2536 34.901 J´ 1 2 3 4 J´ agust,heima,...June11/PXP-141211ak.pxp; lay:2; Gr:4
DE(J´,J´-1) V(v´=m+7) DE(J´,J´-1) H+ Use B´´and D´´ for i =79 V(v´=m+7) DE(J´,J´-1) H+ Use B´´and D´´ for i =81 J´ agust,heima,...June11/PXP-141211ak.pxp; lay:3; Gr:3
Lets have a look at the H+ REMPI spectrum: Move J´=5 peak from + to + 2hn agust,heima,...June11/HBr 79040_80120-151211.pxp; Lay:0 ; Gr:2
This is closer to what one might expect, i.e. a drop in DE(6,5): DE(J´,J´-1) V(v´=m+7) i=79 i=81 Ca. 25 cm-1 drop! F(v´=1) V(v´=m+7) J´ 7 6 6 5 J´ 4 5 J´ 4 3 agust,heima,...June11/Peaks of F1 and V(m+7) detlta2 for HCl state-141211jlak.xls
Lets have a look at the H+ REMPI spectrum: Move J´=5 peak from + to + agust,heima,...June11/HBr 79040_80120-151211.pxp; Lay:0 ; Gr:2
DE(J´,J´-1) i.e. line positions: V(v´=m+7) i=79 i=81 agust,heima,...June11/Peaks of F1 and V(m+7) detlta2 for HCl state-141211jlak.xls J´ agust,heima,...June11/Peaks of F1 and V(m+7) detlta2 for HCl state-141211jlak.xls
agust,heima,...June11/Peaks of F1 and V(m+7) detlta2 for HCl state-141211jlak.xls
Assuming ca. linear behavior of DE vs J´ ( for the V state, J´= 0 – 8): DE i=79 i=81 V(v´=m+7) J´ agust,heima,...June11/Peaks of F1 and V(m+7) detlta2 for HCl state-141211jlak.xls
F(v´=1) V(v´=m+7) 8 E 7 7 6 6 5 4 3 2 agust,heima,...June11/HBr 79040_80120-151211.pxp; Lay:1; Gr:3
Could it be that the relative position of levels is analogous to that shown in slide 15 (?), but not as shown in slide 10 ...in which case the shift could be like: F(v´=1) V(v´=m+7) E 8 7 7 6 6 5 4 3 2 agust,heima,...June11/HBr 79040_80120-151211.pxp; Lay:1; Gr:3
Better linearity: DE V(v´=m+7) i=79 i=81 J´ agust,heima,...June11/Peaks of F1 and V(m+7) detlta2 for HCl state-141211jlak.xls
F(v´=1) V(v´=m+7) 8 E 7 7 6 6 5 4 3 2 agust,heima,...June11/HBr 79040_80120-151211.pxp; Lay:1; Gr:3
8 6 7 5 Possible reassignment: 5 6 7 8 Indeed there is significant Br+ signal here 2hn agust, heima, ...June11/HBr 79040_80120-081211.pxp
In which case the the peak at 79219.2 is J´= 8 (not J´=7)! Thus for the following DE vs J´: DE V(v´=m+7) i=79 i=81 J´ agust,heima,...June11/Peaks of F1 and V(m+7) detlta2 for HCl state-141211jlak.xls
....the blue + hold instead of the red +: 10 9 8 7 6 9 5 8 7 6 5 2hn agust,heima,...June11/HBr 79040_80120-151211.pxp; Lay:0 ; Gr:2
NB!: DE vs J´will be distorted to some extend because of the interaction: DE(J´,J´-1) V(v´=m+7) 6 7 8 J´
Try: DE V(v´=m+7) J´ agust,heima,...June11/Peaks of F1 and V(m+7) detlta2 for HCl state-141211jlak.xls
....the blue + hold instead of the red +: 2hn agust,heima,...June11/HBr 79040_80120-151211.pxp; Lay:0 ; Gr:2
DE(J´,J´-1) F(1D2)(v´=1) Result of switching peaks J´=6 and 7: Coefficient values ± one standard deviation a =0.72958 ± 0.181 b =15.703 ± 0.0316 J´ agust,heima,...June11/PXP-161211ak.pxp; Lay:4, Gr:6
DE(J´,J´-1) F(1D2)(v´=1) Result of switching peaks J´=6 and 7: Coefficient values ± one standard deviation a =0.2396 ± 0.196 b =16.251 ± 0.0481 J´ agust,heima,...June11/PXP-161211ak.pxp; Lay:5, Gr:5
agust,heima,...June11/Peaks of F1 and V(m+7) detlta2 for HCl state-161211jlak.xls
Now, let´s check the effect of slight alterations in positions of V state peaks / levels on the evaluation of W12: Later!
3 T B´(P), D´(P) 4 J´=2 Is this O-peak? 5 6 P 7 8 1hv agust,heima,...June11/PXP-291211ak.pxp
O, Q lines From previous Calculation/ slide T B´(O,Q), D´(O,Q) O-lines J´=2 3 4 agust,heima,...June11/PXP-291211ak.pxp
NB! Upper levels corresponding to P and R lines in F1D2 will not interact with The V state (https://notendur.hi.is/agust/rannsoknir/papers/jcp131-044324-09.pdf See fig. 5): i.e. energy levels excided in P and R lines do have opposite parities to those in the V state with same J´ values What about the S lines?: Analogous energy level structure is for the F 1D2 state
Ephasising P & R simulation: T B´(P,R), D´(P,R) agust,heima,...June11/PXP-291211ak.pxp: Lay:1, Gr:1
Difficult to obtain simultaneous Q and S simulation(?) Lets check Longs spectrum It looks identical to HRH´s spectrum
020112: Evaluate E(J´) from S serie and use these to recalcuate positions of Q Lines: See + in next figure See + in next figure agust,heima,...Jan12/ Peaks of F1 and V(m+7) detlta2 for HCl state-161211jlak-020112ak.xls; sheet4
(i.e. “regular assignment”) According to spectra Peak positions Based on E(J´) values derived from S line serie agust,heima,...Jan12/ Overview spectra-131211hrh-020112ak.pxp; Lay:0, Gr:1
Strange (??) How about to use E(J´) derived from the Q lines and use these to Predict S line positions (i.e. the opposite of the previous calculation!): agust,heima,...Jan12/ Peaks of F1 and V(m+7) detlta2 for HCl state-161211jlak-020112ak.xls; sheet4
See also Slide 36 4 5 Looks only slightly shifted except for the J´=2 peak; NB!: isn´t the energy for + and – levels the same for J´=2 for W=2 states?...let´s check Herzberg....in which case the formulation for rotational levels only holds for J´>2! agust,heima,...Jan12/ Overview spectra-131211hrh-020112ak.pxp; Lay:0, Gr:1
The suggestion at bottom of slide 38 might explain why it is difficult to obtain simltaneous simulation for the Q and S series as mentioned in slide 34 above. Also try the “switched case” agust,heima,...Jan12/ Peaks of F1 and V(m+7) detlta2 for HCl state-161211jlak-020112ak.xls; sheet4
Regular Q lines For J´= 6 and 7 Q- lines switched What peak is this?: Most probably V(m+7) peak. Effect of “switching” agust,heima,...Jan12/ Overview spectra-131211hrh-020112ak.pxp; Lay:0, Gr:1
Most likely the Q peaks are regular, i.e. that J´=6 and 7 are not switched. NB!: according to “regulars” it looks as if peaks J´=6 and 7 are enhanced in intensity both in the Q and the S series. 030112: concerning comment at bottom of slide 38: Indeed the energy is degenerate for no rotation as indicated on figure in slide 32: This is discussed in Herzberg (1950) page 239 and p 129:
Now, let´s check the effect of slight alterations in positions of V state peaks / levels on the evaluation of W12: Lets try to obtain more smooth but realistic DE vs J´curve for V(m+7):
agust,heima,...June11/HBr 79040_80120-151211.pxp; Lay:0 ; Gr:2
+ + agust,heima,...June11/Peaks of F1 and V(m+7) detlta2 for HCl state-161211jlak-020112ak.xls
Notice that anly small shift of peaks changes the DE vs J´curve for V(m+7) significantly
Calc 1 agust,heima,...Jan12/Peaks of F1 and V(m+7) detlta2 for HCl state-161211jlak-020112ak.xls Calc 2 agust,heima,...Jan12/Peaks of F1 and V(m+7) detlta2 for HCl state-161211jlak-050112ak.xls
No major change in W12 evaluations Assuming W12 = W12´(J+(J´+1))1/2 More reliable • W12(J=6) = 4.4 +/- 0.3 • W12´= 0.68 +/- 0.06