210 likes | 388 Views
Marko Samec (1) , Antonio Santiago (2) , Juan Pablo Cardenas (2) , Rosa Maria Benito (2) , Ana Maria Tarquis (3) , Sacha Jon Mooney (4) , Dean Korošak (1,5). Quantifying soil complexity using network models of soil porous structure.
E N D
Marko Samec (1), Antonio Santiago (2), Juan Pablo Cardenas (2), Rosa Maria Benito (2), Ana Maria Tarquis (3), Sacha Jon Mooney (4), Dean Korošak (1,5) Quantifying soil complexity using network models of soil porous structure • (1) Faculty of Civil Engineering, University of Maribor, Maribor, Slovenia (marko.samec@gmail.com) • (2) Grupo de Sistemas Complejos, Departamento de Física, Universidad Politécnica de Madrid, 28040 Madrid, Spain • (3) Departamento de Matemática Aplicada, Universidad Politécnica de Madrid, 28040 Madrid, Spain • (4) Environmental Sciences Section,University of Nottingham, Nottingham, UK • (5) Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
porous matter • 3D X-ray CT
porous matter • complex network theory
porous matter • complexity hsingle parameter
how can one see into the porous structureof material ? X-RAY COMPUTED TOMOGRAPHY
measuring cell pore space solid space X-ray COMPUTED TOMOGRAPHY • part of x-rays absorbed • higher density of the matter, more X-rays are absorbed • the ones that manage to pass, create image
X-ray COMPUTED TOMOGRAPHY image analysis • tomography image • crop and scale • contrast • threshold algorithm • binary image
how can one describethe porous structureof material ? COMPLEX NETWORK THEORY
BEGININGS • Seven Bridges of Königsberg, Euler (1735) • sociogram, Moreno (1993) • p53 gene network , Volgestein et al. (2000) • medicine, biology, computer science, particle physics, economics, sociology, ecology, epidemology, neuroscience,...
BASICS • node or vertex • link or edge • direction • weight • node degree • degree distribution
BASICS • Erdos-Renyi network (random linking) • scale-free networks (preferential linking) degree distribution
X-ray COMPUTED TOMOGRAPHY image analysis Cumulative size distributions, determined from X-CT images of different porosity φ. All samples show scale-free behaviour of size distribution (solid line) with the exponent α=1,8-2.
NETWORK MODELS for description of porous structure of building materials • threshold network model (SN) • preferential attachement model (EN) the network heterogeneity can be adjusted by changing the parameters b and m
can one quantifydifferent porous structureof material ? COMPLEXITY
COMPLEXITY correlation matrices to further explore the effect of the network parameter mon node correlations we calculated the complexityh of the pore network based on node-node link correlations
COMPLEXITY to further explore the effect of the network parameter m on node correlations we calculated the complexityhof the pore network based on node-node link correlations
by combining X-ray CT andcomplex network models • we can quantifycomplexityof porous structure with single parameter CONCLUSIONS
Marko Samec (1), Antonio Santiago (2), Juan Pablo Cardenas (2), Rosa Maria Benito (2), Ana Maria Tarquis (3), Sacha Jon Mooney (4), Dean Korošak (1,5) Quantifying soil complexity using network models of soil porous structure (1) Faculty of Civil Engineering, University of Maribor, Maribor, Slovenia (marko.samec@gmail.com) (2) Grupo de Sistemas Complejos, Departamento de Física, Universidad Politécnica de Madrid, 28040 Madrid, Spain (3) Departamento de Matemática Aplicada, Universidad Politécnica de Madrid, 28040 Madrid, Spain (4) Environmental Sciences Section,University of Nottingham, Nottingham, UK (5) Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia