1 / 15

Understanding Phase of Propagation using Hilbert Transform

This article explains how to use the Hilbert Transform to gain insights into the phase of propagation of a phenomenon. It also demonstrates the application of the Hilbert Transform on a time series signal using MATLAB.

oliverd
Download Presentation

Understanding Phase of Propagation using Hilbert Transform

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. I is the unit matrix and  are the EOFs … … … … … … … … … … … … … … … … Eigenvalue problemcorresponding to a linear system: … … … … … … …

  2. Sometimes use another complex form of EOFS. Apply the Hilbert Transformof U to understand a bit more about the phase of propagationof the phenomenon In essence, the Hilbert transform of a signal (time series) produces a complex variable with real part identical to the time series and the imaginary part is shifted 90º from the original (sometimes called the analytical signal): >> t=[1:1:1000]; >> u1=sin(2*pi*t/200); >> plot(t,u1,’LineWidth’,3) u1 t

  3. >> t=[1:1:1000]; >> u1=sin(2*pi*t/200); >> plot(t,u1,’LineWidth’,3) >> >> u2=hilbert(u1); >> hold on; >> plot(real(u2),'r--','LineWidth',3) u t

  4. >> t=[1:1:1000]; >> u1=sin(2*pi*t/200); >> plot(t,u1,’LineWidth’,3) >> >> u2=hilbert(u1); >> hold on >> plot(real(u2),'r--','LineWidth',3) >> plot(imag(u2),'g','LineWidth',3) u t

  5. Hilbert Transformof U can be regarded as the convolution of U with h(t) P is the Cauchy principal value (assigns values to improper integrals) • hilbert uses a four-step algorithm: • 1. It calculates the FFT of the input sequence, storing the result in a vector x. • 2. It creates a vector h whose elements h(i) have the values: • 1 for i = 1, (n/2)+1 • 2 for i = 2, 3, ... , (n/2) • 0 for i= (n/2)+2, ... , n • 3. It calculates the element-wise product of x and h. • 4. It calculates the inverse FFT of the sequence obtained in step 3 and returns the first n elements of the result.

  6. Echo Intensity in a Fjord

  7. Mean Profile 10 log (echo) b=10*log10(b); bm=mean(b');

  8. Anomaly from Mean b=10*log10(b); ba=b-bm;

  9. REAL EOFs [v,d]=eig(cov(ba’)); plot(v(:,1),z,'LineWidth',3) hold on plot(v(:,2),z,'r','LineWidth',3) plot(v(:,3),z,'g','LineWidth',3) 18% 60% 9%

  10. REAL EOFs Mode 1 = 60% Mode 2 = 18% Mode 3 = 9% ts=ba’*v; plot(ts(:,1),'LineWidth',3) hold on plot(ts(:,2),'r','LineWidth',2) plot(ts(:,3),'g','LineWidth',1)

  11. Hilbert EOF 18% 6% 64% [v,d]=eig(cov(hilbert((ba’))); plot(abs(v(:,1)),z,'LineWidth',3) hold on plot(abs(v(:,2)),z,'r','LineWidth',3) plot(abs(v(:,3)),z,'g','LineWidth',3)

  12. Phase Hilbert EOF Mode 3 = 6% plot(angle(v(:,1))/pi,z,'+','LineWidth',3) hold on plot(angle(v(:,2))/pi,z,'*r','LineWidth',3) plot(angle(v(:,3))/pi,z,'*g','LineWidth',3) xlabel('Mode Phase (rad/\pi)'); ylabel('Depth (m)'); Mode 2 = 18% Mode 1 = 64% Mode Phase

  13. Magnitude of Hilbert EOFs plot(abs(ts(:,1)),'LineWidth',3); hold on plot(abs(ts(:,2)),'r','LineWidth',2) plot(abs(ts(:,3)),'g','LineWidth',1) axis([0 nt 0 6]); xlabel('Time (h)'); ylabel('Mode scale - ABS');

  14. Modes 1 + 2 Real forkeof=1:neof t(keof,:,:)=ts(:,keof)*v(:,keof)'; end Modes 1 + 2 Hilbert Original

  15. 6 Modes Real 6 Modes Hilbert Original

More Related