940 likes | 1.1k Views
Applied Cryptography Week 9 Java Tools. Michael McCarthy. Java Tools. Security Provider Architecture Example Programs Message Digests Symmetric Encryption Digital Signature Algorithm (DSA) Password Based Encryption (PBE)
E N D
Applied CryptographyWeek 9 Java Tools Michael McCarthy Applied Cryptography
Java Tools • Security Provider Architecture • Example Programs Message Digests Symmetric Encryption Digital Signature Algorithm (DSA) Password Based Encryption (PBE) Session Key Encryption (RSA) Reading certificates Diffie-Hellman Key Exchange Applied Cryptography
Java Tools • The Security API is a core API of the Java programming language, • built around the java.security package (and its subpackages). Since JDK 1.1 "Java Cryptography Architecture" (JCA) includes Digital Signatures and Message Digests Since JDK 1.4 the Java Cryptography Extension (JCE) is included. This extends the JCA API to include APIs for encryption, key exchange, and Message Authentication Code (MAC). Applied Cryptography
The Security Architecture Java describes operations (engines). There may be several vendors that have implementations of these engines. This is all set up so that the programmer can select which vendor’s code to use. Applied Cryptography
Example Engine Classes MessageDigest Signature KeyFactory KeyPairGenerator SecureRandom A program may simply request a particular engine (such as a MessageDigest object) implementing a particular algorithm (such as the secure hash algorithm SHA-1) and get an implementation from one of the installed providers. Applied Cryptography
The Architecture Of Security Providers Engines are always abstract and independent of any particular algorithm. Think of engines as operations. A Message Digest operation may be computed in several ways (MD5, SHA1). Different providers will implement MD5 differently. An algorithm is an implementation of an engine. The programmer works with the engine. The administrator sets the provider. Applied Cryptography
SUNJSSE Application Programmer SUNRSAS16N 1.3 Java.Security.Security Engine Class Provider Class Algorithm Class Security Class Message Digest From same vendor SUN Asks providers if they can handle a MessageDigest.MD5 Provider “MessageDigest.MDS” From same vendor SUNJCE Holds a list of providers engine algorithm KeyPairGenerator.DSA Security Provider SSI.Provider Applied Cryptography Map (engine, algorithm) pair to a class
From jre/lib/security/java.security # Each Provider may implement several engines # security.provider.1=sun.security.provider.Sun security.provider.2=com.sun.net.ssl.internal.ssl.Provider security.provider.3=com.sun.rsajca.Provider security.provider.4=com.sun.crypto.provider.SunJCE security.provider.5=sun.security.jgss.SunProvider Applied Cryptography
Looking at Providers // Page 161 of "Java Security" Oaks import java.security.*; import java.util.*; public class ExamineSecurity { public static void main(String args[]) { Applied Cryptography
try { Provider p[] = Security.getProviders(); for(int i = 0; i < p.length; i++) { System.out.println(p[i]); for(Enumeration e = p[i].keys(); e.hasMoreElements(); ) System.out.println("\t" + e.nextElement()); } } catch(Exception e) { System.out.println(e); } } } Applied Cryptography
java ExamineSecurity SUN version 1.2 Signature.SHA1withDSA KeySize Signature.SHA1withDSA ImplementedIn CertificateFactory.X509 ImplementedIn AlgorithmParameterGenerator.DSA Alg.Alias.Signature.SHA/DSA Pages deleted … SunJSSE version 1.4 SSLContext.SSL KeyManagerFactory.SunX509 Signature.MD5withRSA Signature.SHA1withRSA KeyFactory.RSA Providers Engine, Algorithm provided Applied Cryptography
SunRsaSign version 1.0 KeyFactory.RSA Signature.MD5withRSA Signature.SHA1withRSA Signature.MD2withRSA KeyPairGenerator.RSA Many deletions BouncyCastle added later SunJCE version 1.4 Cipher.DES KeyStore.JCEKS Alg.Alias.SecretKeyFactory.TripleDES SecretKeyFactory.DES SunJGSS version 1.0 Applied Cryptography
MessageDigest is an Engine import java.security.MessageDigest; import java.security.NoSuchAlgorithmException; public class ComputeAMessageDigest { public static void main(String args[]) { MessageDigest sha=null; try { // engine algorithm sha = MessageDigest.getInstance("SHA-1"); } catch(NoSuchAlgorithmException e) { System.out.println("No such algorithm"); } Applied Cryptography
System.out.println(sha.getAlgorithm()); String s = "Applied Cryptography"; byte a[] = s.getBytes(); sha.update(a); byte[] hash = sha.digest(); System.out.println("The hash value of ‘" + s + “’ is "); for(int i = 0; i < hash.length; i++) { System.out.print(hash[i] + " "); } } } Applied Cryptography
java ComputeAMessageDigest SHA-1 The hash value of ‘Applied Cryptography’ is -57 -97 -77 -73 -64 -13 87 -8 2 -45 44 -16 65 -77 -36 -27 65 51 -109 –104 Add a period… java ComputeAMessageDigest SHA-1 The hash value of ‘Applied Cryptography.’ is -61 106 41 -23 -31 48 0 114 -104 -99 127 -107 -87 -73 77 50 -47 115 -84 -112 Applied Cryptography
We Can Choose an Algorithm import java.security.MessageDigest; import java.security.NoSuchAlgorithmException; public class ComputeAMessageDigest { public static void main(String args[]) { MessageDigest sha=null; try { // engine algorithm sha = MessageDigest.getInstance("MD5"); } catch(NoSuchAlgorithmException e) { System.out.println("No such algorithm"); } Applied Cryptography
System.out.println(sha.getAlgorithm()); String s = "Applied Cryptography."; byte a[] = s.getBytes(); sha.update(a); byte[] hash = sha.digest(); System.out.println("The hash value of '" + s + "' is "); for(int i = 0; i < hash.length; i++) { System.out.print(hash[i] + " "); } } } Applied Cryptography
java ComputeAMessageDigest MD5 The hash value of 'Applied Cryptography.' is 16 -26 -44 -19 -78 23 13 88 12 -49 17 6 126 -66 -1 -84 Applied Cryptography
We Can Choose a Provider import java.security.NoSuchAlgorithmException; import java.security.NoSuchProviderException; import java.security.SecureRandom; public class ComputeSecureRandom { public static void main(String args[]) { SecureRandom random = null; try { // Secure Hash Algorithm Pseudo Rand Num Gen random = SecureRandom.getInstance("SHA1PRNG", "SUN"); } Applied Cryptography
catch(NoSuchAlgorithmException e) { System.out.println("No such algorithm"); } catch(NoSuchProviderException e) { System.out.println("No such provider"); } byte[] myRandomBytes = new byte[10]; // may be any size random.nextBytes(myRandomBytes); System.out.println("The random bytes are "); for(int i = 0; i < myRandomBytes.length; i++) { System.out.print(myRandomBytes[i]+ " "); } } } Applied Cryptography
Writing Your Own Security Provider You must extend the SPI (Security Provider Interface) of the engine you want to provide. You must tell the Security class that you are providing this service. The programmer will make a request to the Security class And can specify the engine, algorithm, and the provider Applied Cryptography
A Simple Provider import java.security.Provider; public class XYZProvider extends Provider { public XYZProvider() { super("XYZCoolProvider", 1.0, "XYZ Security Provider"); // (Engine name, Algorithm name)--> class put("KeyPairGenerator.XYZ", "XYZKeyPairGenerator"); } } Applied Cryptography
A Simple Class to Hold a Key // A class to hold key data for a shift cipher import java.security.*; public class XYZKey implements Key, PublicKey, PrivateKey { private int rotValue; // required for Key (PublicKey and PrivateKey are markers) public String getAlgorithm() { return "XYZ"; } Applied Cryptography
// required for Key public String getFormat() { return "XYZ Special Format"; } public void setRotValue(int i) { rotValue = i; } public int getRotValue() { return rotValue; } // required for Key public byte[] getEncoded() { byte b[] = new byte[4]; b[3] = (byte)((rotValue >> 24) & 0xff); b[2] = (byte)((rotValue >> 16) & 0xff); b[1] = (byte)((rotValue >> 8) & 0xff); b[0] = (byte)((rotValue >> 0) & 0xff); return b; } } Applied Cryptography
A KeyPairGenerator is an Engine // From Oaks page 176 with modifications import java.security.KeyPairGenerator; import java.security.SecureRandom; import java.security.Security; import java.security.KeyPair; import java.security.NoSuchAlgorithmException; import java.security.NoSuchProviderException; import java.security.PrivateKey; import java.security.PublicKey; Applied Cryptography
public class XYZKeyPairGenerator extends KeyPairGenerator { SecureRandom random; public XYZKeyPairGenerator() { super("XYZ"); } public void initialize(int strength, SecureRandom sr) { System.out.println("Running initialize"); random = sr; } Applied Cryptography
public KeyPair generateKeyPair() { int r = random.nextInt() % 25; XYZKey pub = new XYZKey(); XYZKey priv = new XYZKey(); pub.setRotValue(r); priv.setRotValue(-r); KeyPair kp = new KeyPair(pub,priv); return kp; } Applied Cryptography
public static void main(String args[]) throws NoSuchAlgorithmException, NoSuchProviderException { // add a new Provider to the Security class // the new Provider is called XYZCoolProvider and it maps the engine, // algorithm // pair "KeyPairGenerator.XYZ" to the class "XYZKeyPairGenerator" Security.addProvider(new XYZProvider()); // At this point Security knows about the mapping // Try to get an instance of an XYZKeyPairGenerator // by requesting from Security a KeyPairGenerator with algorithm XYZ // and provider XYZCoolProvider – provider name is optional KeyPairGenerator kpg = KeyPairGenerator.getInstance("XYZ","XYZCoolProvider");
// All KeyPair generators can be initialized kpg.initialize(0, new SecureRandom()); // get a KeyPair KeyPair kp = kpg.generateKeyPair(); System.out.println("Got key pair "); PrivateKey privK = kp.getPrivate(); PublicKey pubK = kp.getPublic(); System.out.println("Algorithm = " + pubK.getAlgorithm()); } } Applied Cryptography
java XYZKeyPairGenerator Running initialize Got key pair Algorithm = XYZ Applied Cryptography
Symmetric Encryption Example java WorkingWithBlowfish ABCDEFG as bytes 41 42 43 44 45 46 47 Cipher text as bytes 9e dd 46 30 b1 14 79 6b After decryption ABCDEFG Applied Cryptography
WorkingWithBlowFish.java import java.security.*; import javax.crypto.KeyGenerator; import javax.crypto.Cipher; public class WorkingWithBlowfish { public static void main(String args[])throws Exception { String clear = "ABCDEFG"; System.out.println(clear + " as bytes " ); displayBytes(clear.getBytes());
// Build a key from scratch // Symmetric keys come from the KeyGenerator engine // Asymmetric keys come from the KeyPairGenerator engine KeyGenerator kg = KeyGenerator.getInstance("Blowfish"); kg.init(128); // key size // create the key data Key k = kg.generateKey(); // We need a Blowfish cipher based on that key // We specify the algorithm/mode/padding Cipher cipher = Cipher.getInstance ("Blowfish/ECB/PKCS5Padding"); // initialize the ciper with the key cipher.init(Cipher.ENCRYPT_MODE, k);
// encrypt byte[] cipherText = cipher.doFinal(clear.getBytes()); System.out.println("Cipher text as bytes " ); displayBytes(cipherText); // change to decrypt mode using the same key cipher.init(Cipher.DECRYPT_MODE, k); byte[] clearBytes = cipher.doFinal(cipherText); String result = new String(clearBytes); System.out.println("After decryption \n" + result); } Applied Cryptography
// display a byte in hex public static void displayBytes(byte [] b) { for (int i = 0; i < b.length; i++) { byte aByte = b[i]; String hexLo = Integer.toHexString( aByte & 0x0F ); String hexHi = Integer.toHexString( (aByte >> 4) & 0x0F ); System.out.print(hexHi + hexLo + " "); } System.out.println(); } } Applied Cryptography
Algorithm/Mode/Padding ("Blowfish/ECB/PKCS5Padding"); Block ciphers operate on fixed size chunks of data (often 64 bits). So, sometimes we must add padding to the plaintext. Typically two options: No Padding (the plaintext size must be a multiple of 64 bits) PKCS#5 (Public Key Cryptography Standard) 8 Byte block Example: H E L L O 3 3 3 padding bytes always present H E L L O J O E 8 8 8 8 8 8 8 8 Applied Cryptography
Algorithm/Mode/Padding ("Blowfish/ECB/PKCS5Padding"); The Mode Block ciphers operate on fixed size chunks Stream ciphers operate on a byte at a time ECB (Electronic Code Book ) Mode Same plaintext block will always encrypt to the same ciphertext block Fine for sending single chunks of data (like a key) Bad for sending a long streams of English text(frequency analysis) Applied Cryptography
Algorithm/Mode/Padding ("Blowfish/ECB/PKCS5Padding"); The Mode CBC (Cipher Block Chaining) Uses information from previous blocks to encrypt the current block. The same long message still encrypts the same way every time it is sent. So, we add random bits in an Initialization Vector or IV to initialize the cipher. This IV may be public and should be different for every message. Applied Cryptography
Algorithm/Mode/Padding ("Blowfish/ECB/PKCS5Padding"); CFB (Cipher Feedback) Like CBC but works on small chunks of data. Useful for chat session encryption. Requires an IV for each message sent with the same key. OFB (Output Feedback) Like CFB and CBC and requires an IV One bit error in the ciphertext produces one bad bit in the plaintext
Working With DSA Signing • We want to sign an Ascii or binary file • Use KeyPairGenerator engine to create a DSA key • Use Signature engine based on SHA1 with DSA • to sign the file • Display and save the signature and public key Applied Cryptography
// SignFile.java from IBM's "Java 2 Network Security" 2nd. Ed. import java.io.*; import java.security.*; class SignFile { public static void main(String arg[]) { if (arg.length != 3) System.out.println( "Usage: java SignFile DATAFILE”+ “SIGNATUREFILE PUBLICKEYFILE"); else Applied Cryptography
try { // We create the keypair – // Key strength can be 1024 inside the United States KeyPairGenerator KPG = KeyPairGenerator.getInstance ("DSA", "SUN"); SecureRandom r = new SecureRandom(); KPG.initialize(1024, r); KeyPair KP = KPG.generateKeyPair(); // We get the generated keys PrivateKey priv = KP.getPrivate(); PublicKey publ = KP.getPublic(); // We intialize the signature Signature dsasig = Signature.getInstance("SHA1withDSA", "SUN"); dsasig.initSign(priv); Applied Cryptography
// We get the file to be signed FileInputStream fis = new FileInputStream(arg[0]); BufferedInputStream bis = new BufferedInputStream(fis); byte[] buff = new byte[1024]; int len; // We call the update() method of Signature class -> // Updates the data to be signed while (bis.available() != 0) { len=bis.read(buff); dsasig.update(buff, 0, len); } // We close the buffered input stream and the file input stream bis.close(); fis.close(); Applied Cryptography
// We get the signature byte[] realSignature = dsasig.sign(); // We write the signature to a file FileOutputStream fos = new FileOutputStream(arg[1]); fos.write(realSignature); fos.close(); // Dsiplay the signature in hex System.out.println("The Signature of " + arg[0] + " in hex\n"); displayBytes(realSignature); // We write the public key to a file byte[] pkey = publ.getEncoded(); FileOutputStream keyfos = new FileOutputStream(arg[2]); keyfos.write(pkey); keyfos.close(); Applied Cryptography
// Display the public key in hex System.out.println("The DSA public key in hex\n"); displayBytes(pkey); } catch (Exception e) { System.out.println("Caught Exception: " + e); } } Applied Cryptography
public static void displayBytes(byte [] b) { for (int i = 0; i < b.length; i++) { byte aByte = b[i]; String hexLo = Integer.toHexString( aByte & 0x0F ); String hexHi = Integer.toHexString( (aByte >> 4) & 0x0F ); System.out.print(hexHi + hexLo + " "); } System.out.println(); } } Applied Cryptography
D:\McCarthy\www\95-804\signfile> java SignFile SignFile.java SignatureFile.txt PublicKeyFile.txt The Signature of SignFile.java in hex 30 2c 02 14 3b 35 a9 e5 53 41 35 1e 86 43 5c 00 a6 46 be 37 82 1f fc fb 02 14 08 98 b8 ab 8d 64 af c3 72 ae 84 fb 1b 1d ea cd e4 d0 eb 79 The DSA public key in hex 30 82 01 b8 30 82 01 2c 06 07 2a 86 48 ce 38 04 01 30 82 01 1f 02 81 81 00 fd 7f 53 81 1d 75 12 29 52 df 4a 9c 2e ec e4 e7 f6 11 b7 52 3c ef 44 00 c3 1e 3f 80 b6 51 26 69 45 5d 40 22 51 fb 59 3d 8d 58 fa bf c5 f5 ba 30 f6 cb 9b 55 6c d7 81 3b 80 1d 34 6f f2 66 60 b7 6b 99 50 a5 a4 9f 9f e8 04 7b 10 22 c2 4f bb a9 d7 fe b7 c6 1b f8 Applied Cryptography
3b 57 e7 c6 a8 a6 15 0f 04 fb 83 f6 d3 c5 1e c3 02 35 54 13 5a 16 91 32 f6 75 f3 ae 2b 61 d7 2a ef f2 22 03 19 9d d1 48 01 c7 02 15 00 97 60 50 8f 15 23 0b cc b2 92 b9 82 a2 eb 84 0b f0 58 1c f5 02 81 81 00 f7 e1 a0 85 d6 9b 3d de cb bc ab 5c 36 b8 57 b9 79 94 af bb fa 3a ea 82 f9 57 4c 0b 3d 07 82 67 51 59 57 8e ba d4 59 4f e6 71 07 10 81 80 b4 49 16 71 23 e8 4c 28 16 13 b7 cf 09 32 8c c8 a6 e1 3c 16 7a 8b 54 7c 8d 28 e0 a3 ae 1e 2b b3 a6 75 91 6e a3 7f 0b fa 21 35 62 f1 fb 62 7a 01 24 3b cc a4 f1 be a8 51 90 89 a8 83 df e1 5a e5 9f 06 92 8b 66 5e 80 7b 55 25 64 01 4c 3b fe cf 49 2a 03 81 85 00 02 81 81 00 83 ea 93 df e3 b8 ea c4 97 34 e0 17 c4 16 75 14 04 4e c4 e8 3e 58 4e 19 ca 49 7f 59 39 90 b4 43 14 43 99 07 53 62 72 a3 b0 ca e4 0b d4 23 28 3f 1b f6 94 a7 e2 54 b4 d5 d8 28 6f 2e 37 3c a0 c6 0d a8 a2 dd 02 1f b3 5d dc 8f b3 73 43 f8 12 47 59 5b d6 f6 4c 48 7d 50 69 c9 b8 f6 58 cd 92 2f 7e de 48 95 df c0 69 5e 30 cb 8b b8 26 74 44 92 17 b7 a6 3b 96 9b d6 07 34 8a 5f d3 68 1f e6 6e Applied Cryptography
Working With DSA Verifying • We want to verify the signature on an Ascii or • binary file • Read the public key of the signer • Read the signature • Read the file and verify that the signature was created • by the holder of the associated private key and that • the file was not altered Applied Cryptography
// VerifyFile.java from “Java 2 Network Security” IBM import java.io.*; import java.security.*; import java.security.spec.*; class VerifyFile { public static void main(String args[]) { if (args.length != 3) System.out.println("Usage: java VerifyFile DATAFILE” + “SIGNATUREFILE PUBLICKEYFILE"); else try { FileInputStream fis = new FileInputStream(args[0]); FileInputStream sfis = new FileInputStream(args[1]); FileInputStream pfis = new FileInputStream(args[2]); Applied Cryptography