1 / 53

Vector and axial-vector properties of SU(3) baryons within a chiral soliton model

Vector and axial-vector properties of SU(3) baryons within a chiral soliton model. Ghil-Seok Yang, Hyun-Chul Kim. NTG ( N uclear T heory G roup), Inha University , Incheon , Korea. 1. 2. G. S. Yang, H.-Ch. Kim , [ arXiv:hep-ph /1010.3792, hep-ph /1102.1786]

olympe
Download Presentation

Vector and axial-vector properties of SU(3) baryons within a chiral soliton model

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Vector and axial-vector properties of SU(3) baryons within a chiral soliton model Ghil-Seok Yang, Hyun-Chul Kim NTG (Nuclear Theory Group), Inha University, Incheon,Korea 1. 2. G. S. Yang, H.-Ch. Kim, [arXiv:hep-ph/1010.3792,hep-ph/1102.1786] 2. G. S. Yang, H.-Ch. Kim, M. V. Polyakov, Phys. Lett. B 695, p214, Jan, (2011) 3. G. S. Yang, H.-Ch. Kim, Prog. Theor. Phys. Suppl. No. 186 pp. 222-227 (2010) 4. G. S. Yang, ph.D Thesis, 2010 (unpublished), Ruhr-Universität, Bochum, Germany Hadron Nuclear Physics 2011 “Quarks in hadrons, nuclei, and hadronicmatter” Pohang, Feb. 21, 2011

  2. Outline • SU(3) baryons ( exotic states ) • Motivation ( Θ+, N* ) • Chiral Soliton Model [Mass splittings] [Vector Transitions] - Magnetic Moments - Transition Magnetic Moments - Radiative Decay Widths [Axial-Vector Transitions] - Axial-vector Coupling Constants - Decay Widths • Summary

  3. SU(3) Baryons Fundamental Particles ? multiplets (proton, neutron) : isospin [ SU(2)] → higher symmetry (Σ, K,···) : SU(3) Naïve Quark Model(up, down, strange light quarks): SU(3) scheme to classify particles with the same spin and parity Hadron [ baryon (qqq), meson (qq) ] : SU(3) color singlet representation 10*(10) Why not 4, 5, 6, … quark states ? Nothing prevents such states to exist Y. s. Oh and H. c. Kim, Phys. Rev. D 70, 094022 (2004) SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  4. Σ+ Σ0 Σ- (uudss) (uddss) Ξ-- Ξ+ Ξ0 Ξ- 3/2 3/2 3/2 3/2 Anti-decuplet (10) 10 10 10 Motivation 1997, Diakonov, Petrov, andPolyakov : Narrow 5-quark resonance (q4q : Θ+) ( M =1530, Γ~15MeV from Chiral SolitonModel) Y Θ+(uudds) S = 1 2 p* ( uud ) ( udd) n* 1 S = 0 T3 -½ ½ S = -1 S = -2 -1 SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  5. Motivation Successful searches for Θ+ (2003~2005) : 2007 PDG SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  6. Σ+ Σ0 Σ- (uudss) (uddss) Ξ-- Ξ+ Ξ0 Ξ- 3/2 3/2 3/2 3/2 10 10 10 Motivation ? Unsuccessful searches for Θ+ (2006~2008) : 2010 PDG New positive experiments (2005 - 2010) ■DIANA2010 (Θ+) : M = 1538±2, Γ= 0.39±0.10 MeV (K+n → K0p, higher statistical significance : 6σ - 8σ) [confirmed by LEPS, SVD, KEK, …] ■GRAAL (N* ) : M = 1685±0.012 MeV, (CBELSA/TAPS, LNS-Sendai, …) Y Θ+(uudds) S = 1 2 p* ( uud) ( udd) n* 1 S = 0 T3 -½ ½ -1 Anti-decuplet (10) ??? SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  7. Motivation Problems in the previous solitonic approaches D.P.P : Diakonov, Petrov, Polyakov, Z. Physics. A. 359, 305-314 (1997) E.K.P : Ellis, Karliner, Praszalowicz, JHEP. 0405, 002 (2004) χQSM : Tim Ledwig, H.-Ch. Kim, K. Goeke, Phys. Rev. D. 78, 054005 & Nucl. Phys. A 811 353 2008 Masssplittings of baryons : crucial ! → model parameters : vectorand axial-vector properties in particular, the effect of SU(3) symmetry breaking SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  8. Chiral Soliton Model Chiral Soliton Model : Effective and relativistic low energy theory : Large Nclimit : meson field → soliton : Quantizing SU(3) rotated-meson fields → Collective Hamiltonian, model baryon states HedgehogAnsatz: Collective quantization SU(2) Witten imbedding into SU(3): SU(2) X U(1) SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  9. Chiral Soliton Model (mass) Collective Hamiltonian for flavor symmetry breakings + Y Y Y Mass Mass Δ+ Δ0 ( ddd)Δ- Δ++( uuu) ( udd) n p( uud) Δ N 1 1 940 1232 Λ Λ -½ ½ -3/2 -3/2 -½ ½ 1116 T3 T3 1385 1193 Σ* Σ*- Σ0 Σ0 Σ- Σ+ Σ*0 Σ*+ 1533 1318 Ξ* -1 -1 Ξ*- Ξ*0 Ξ ( dss)Ξ- Ξ0( uss) Ω- -2 1673 Ω-( sss) Decuplet (10): J p = 3/2+ Octet (8): J p = 1/2 + SU(3) flavor symmetry breaking + Isospin symmetry breaking SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  10. Two sources for the isospin symmetry breaking • mass differences of up and down quarks (hadronic part) • Electromagnetic interactions (EM part) Chiral Soliton Model (mass) • In order to take fully into account the masses of • the baryon octet as input, it is inevitable to consider • the breakdown of isospin symmetry. SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  11. k 939.6 938.3 Y B(p) B(p) ( udd) n p( uud) 1 p - k 1189 p p 1197 Λ -½ ½ -1 1 T3 1315 1321 Σ0 Σ- Σ+ -1 ( dss)Ξ- Ξ0( uss ) Chiral Soliton Model (mass) EM mass corrections Electromagnetic (EM) self-energy Gasser, Leutwyler, Phys.Rep 87, 77“Quark Masses” ΔMB = MB1 – MB2 = (ΔMB )H + (ΔMB )EM ( p – n )exp~ –1.293 MeV ( p – n ) EM~0.76MeV SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  12. Chiral Soliton Model (mass) In the ChSM, It can be further reduced to Because of Bose symmetry G. S. Yang, H.-Ch. Kim and M. V. Polyakov, Phys. Lett. B 695, 214 (2011) SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  13. Chiral Soliton Model (mass) Weinberg-Treiman formula MEM(T3) = αT32 + βT3+ γ Dashenansatz ΔMEM ~ κT32~ κ’Q2 SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  14. Chiral Soliton Model (mass) Coleman-Glashow relation SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  15. Chiral Soliton Model (mass) Χ2 fit Coleman-Glashow relation SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  16. Chiral Soliton Model (mass) SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  17. [ D.W.Thomas et al.] [ PDG, 2010 ] [ GW, 2006 ] [ Gatchina, 1981 ] Chiral Soliton Model (mass) ■Physical mass differences of baryon decuplet SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  18. Chiral Soliton Model Two advantages offered by the model-independent approach in the χSM. 1. the very same set of dynamical model-parametersallows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons, namely octet, decuplet, antidecuplet, and so on. 2. these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions. [8] Mass : α, β, γ(for octet, decuplet, antidecuplet,…) Vector transitions : wi (i=1,2,…,6) Axial transitions : ai (i=1,2,…,6) model-parameters [10], [10] Baryons l = l0(1 + cΔT): linear expansion coefficient of a wire, c SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  19. Chiral Soliton Model (mass) Mass splittings within a Chiral Soliton Model Formulae for Baryon Octet Masses (ΔM)EM (ΔM)H hadronic mass part in terms of δ1 and δ2 SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  20. Chiral Soliton Model (mass) Formulae for Baryon Decuplet Masses hadronic mass part in terms of δ1 and δ2 SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  21. Chiral Soliton Model (mass) Formulae for Baryon Anti-Decuplet Masses hadronic mass part in terms of δ3 SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  22. Chiral Soliton Model (mass) Present analysis reproduces all kind of well-known mass relations ■Coleman-Glashow relation is still satisfied ■Generalized Gell-Mann-Okubo relation When the effect of the isospin sym. br is turned off, • Generalized Guadagniniformulae SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  23. Chiral Soliton Model (mass) Baryon octet masses SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  24. Chiral Soliton Model (mass) Employing the value of the ratio [Using Θ+ & Ξ-- masses, based on χQSM: ΣπN=(74±12) MeV, P. Schweitzer, Eur. Phys. J. A 22, 89 (2004)] [GWU analysis of πN scattering data : ΣπN=(64±8) MeV, Pavan et al, PiN Newslett.16:110-115,2002] [Updated analysis in the pχQM: ΣπN=(79±7) MeV, Inoue, et al, Phys. Rev. D 69 035207(2004)] SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  25. Chiral Soliton Model (mass) Baryon decuplet masses SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  26. Chiral Soliton Model (mass) Baryon antidecupletmasses SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  27. Chiral Soliton Model (Vector) Vector transitions with The full expression for the magnetic transitions μBB’ = μBB’(0) + μBB’(op)+ μBB’(wf) SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  28. Chiral Soliton Model (Vector) 2. Magnetic transitions SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  29. Chiral Soliton Model (Vector) 2. Magnetic transitions Magnetic moments for baryon decuplet(in units of μN) mass splitting analysis SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  30. Chiral Soliton Model (Vector) 2. Magnetic transitions Magnetic moments for baryon antidecuplet (in units of μN) SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  31. Chiral Soliton Model (Vector) 2. Magnetic transitions Transition magnetic moments (in units of μN) Exp. |μNΔ|~3.1 1.61±0.08 <0.82 isospin asymmetry mass splitting analysis SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  32. Σ+ Σ0 Σ- Y Θ+ 2 1 Ξ-- Ξ0 Ξ- 3/2 3/2 3/2 T3 -½ ½ 10 10 10 -1 Ξ+ 3/2 Chiral Soliton Model (Vector) 2. Magnetic transitions Partial decay widths of the radiative decays (in units of keV) Consistent with GRAAL data - “Narrow nucleon resonance N* (1685) has much stronger photocoupling to the n than to the p” • [ Kuznetsov, Polyakov, T. Boiko, J.Jang, A. Kim, W. Kim, • H.S. Lee, A. Ni,G. S. Yang, Acta. Phys. Polon. B 39, 1949 (2008) ] n* p* - Good agreement with estimates for non-strange members of antidecupletN* from Chiral SolitonModel - Being a candidate for the non-strange member of the anti-decuplet supports the existence of theΘ+ SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  33. Chiral Soliton Model (axial-vector) Axial-vector transitions with The full expression for the axial-vector transitions g1BB’ = g1BB’(0) + g1BB’(op)+ g1BB’(wf) SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  34. Chiral Soliton Model (axial-vector) Axial-vector transitions a1 = -3.98 ± 0.01 a2 = 3.12 ± 0.03 a3 = 0.62± 0.13 a4 = 2.91± 0.07 a5 = -0.22± 0.03 a6 = -0.80± 0.04 SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  35. Chiral Soliton Model (axial-vector) Axial-vector transitions 84.7±0.02 30.4±0.29 ΓΘ+n = 0.80±0.12 MeV PDG 2007(Θ+) : Γ= 0.9±0.3 MeV ΓΘ+N = 2ΓΘ+n = 1.61±0.25 MeV DIANA 2010 (Θ+) : Γ= 0.38±0.11 MeV ΓΘ+N(0) = 0.52±0.13 MeV ΓΘ+N(op)=1.31±0.07 MeV ΓΘ+N(wf)=0.36±0.01 MeV SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  36. Chiral Soliton Model (Results) ΓΘ+ : 0.38±0.11MeV (DIANA), 0.9±0.3MeV (2007 PDG) D.P.P : Diakonov, Petrov, Polyakov, Z. Physics. A. 359, 305-314 (1997) E.K.P : Ellis, Karliner, Praszalowicz, JHEP. 0405, 002 (2004) χQSM : Tim Ledwig, H.-Ch. Kim, K. Goeke, Phys. Rev. D. 78, 054005 & Nucl. Phys. A 811 353 2008 SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  37. Σ+ Σ0 Σ- Y Θ+ 2 1 Ξ-- Ξ0 Ξ- 3/2 3/2 3/2 T3 -½ ½ 10 10 10 -1 Ξ+ 3/2 Summary Chiral SolitonModel : “model-independent approach” ●Mass splittings : SU(3) and isospin symmetry breakings with EM → No Free Parameter ! ●Masses, magnetic moments (8, 10) Magnetic transitions and decay widths (8, 10) → very good agreement with experimental data ● MΘ+= 1524 MeV [LEPS, DIANA], MN*= 1685 MeV [GRAAL] used as input, : reliable value within a chiral soliton model ● ΓΘ+= 1.61±0.25MeV [DIANA 2010 : 0.38±0.11]. small decay width is reproduced ● The study for the mass splittings to the 2nd order : done [hep-ph 1102.1786, Yang & Kim] Consequent results will appear elsewhere n* p* SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  38. Спасибо Thank you ありがとうございます 감사합니다 Danke schön TERIMA KASIH 謝謝

  39. Mixings of baryon states Chiral Soliton Model (mass) Mixing coefficients SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  40. Chiral Soliton Model (Vector) 1. Electric transitions Gell-Mann-Nishijima relation

  41. Chiral Soliton Model (mass) Octet, Decuplet ( Θ+, N*) Anti-decuplet Parameters to be fixed: Input for fixing the parameters ( χ2fitting) • Experimental data for the all masses of the baryon octet • Experimental values for the Σ* → I1 • Experimental values for the Θ+ & N* SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  42. Chiral Soliton Model (mass) Moment of inertia The ratio of current quark masses χ2fitting from the octet mass formulae ( Gasser, Leutwyler: R = 43.5±2.2) J. Gasser & H. Leutwyler, Phys. Rept. 87, 77 (1982) & PDG 2008 More complete analysis gives us more information SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  43. Chiral Soliton Model (Vector) 1. Electric transitions Flavor SU(3) breaking: The Ademollo-Gatto Theorem Mixing coefficients from mass splittings

  44. Chiral Soliton Model (Vector) 1. Electric transitions

  45. Chiral Soliton Model (Vector) Vector transitions with Sachs’ form factor f E(q2) = f1(q2) + f2(q2) [q2/(2MN)2] fM(q2) = f1(q2) + f2(q2) Y 1 p n Λ T3 -½ ½ -1 1 Σ0 Σ- Σ+ -1 Ξ- Ξ0

  46. Isobar Model

  47. Isobar Model

  48. Mixings of baryon states Constraint for the collective quantization : Chiral Soliton Model Model baryon state SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  49. Chiral Soliton Model Mixing coefficients SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

  50. Chiral Soliton Model (mass) δN* SU(3) baryons MotivationMass splitting Vector Axial-vector Summary

More Related