1 / 23

CS1501 Presentations

CS1501 Presentations Binary Search Trees Trees A tree is an abstract data structure consisting of nodes and pointers. Rooted Trees A rooted tree is a tree with one node designated as the root node. Binary Trees

omer
Download Presentation

CS1501 Presentations

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CS1501 Presentations Binary Search Trees

  2. Trees • A tree is an abstract data structure consisting of nodes and pointers.

  3. Rooted Trees • A rooted tree is a tree with one node designated as the root node.

  4. Binary Trees • A binary tree adds the constraint that each node may have 0, 1 or a maximum of 2 “children” • Nodes pointed to by a node are called that node’s children • Nodes with no children are called leaves.

  5. Binary Trees • Another way of looking at a binary tree is a root node with a left subtree and a right subtree. left right

  6. Doubly Linked Lists HEAD TAIL Dnode definesa Record Data isoftype Whatever Prev isoftype Ptr toa Dnode Next isoftype Ptr toa Dnode endrecord // Dnode

  7. Binary Trees ROOT • Keep the head pointer • Change the node slightly… • still has data • still has two pointers • but it looks different!

  8. Binary Trees ROOT Tnode definesa Record Data isoftype Whatever Left isoftype Ptr toa Tnode Right isoftype Ptr toa Tnode endrecord // Tnode Now we can arrange these nodes to represent a binary tree

  9. Tree_Node definesa Record End Record Structure for Binary Trees data isoftype <Some DataType> left_child isoftype Ptr toa Tree_Node right_child isoftype Ptr toa Tree_Node Root isoftype Ptr toa Tree_Node Root

  10. Binary Search Trees (BSTs) Binary Search Tree Head Pointer to a Tree Node Root • For each node, the value stored in it is: • Greater than the value in every node in the left subtree • Less than the value in every node in the right subtree 34 25 45 21 29 52 41

  11. Tree Traversal Binary Search Tree Head Pointer to a Tree Node Root • The nodes of a tree can be visited in different orders to produce different results • Inorder • Preorder • Postorder 34 25 45 21 29 52 41

  12. Inorder Traversal • Traverse the tree “In order”: • Visit the tree’s left subtree • Visit the current • Visit right subtree Procedure In_Order( t_ptr isoftype ptr toa Tree_Node ) if ( t_ptr <> NIL ) then In_Order( t_ptr^.left_child ) Do_whatever( t_ptr^.data ) In_Order( t_ptr^.right_child) endif endprocedure

  13. Inorder Traversal Example: In Order Print Procedure InOrderPrint ( current iot in Ptr toa Tree_Node ) If ( current <> NIL ) then InOrderPrint ( current^.left ) Print ( current^.data ) InOrderPrint ( current^.right ) endif endprocedure

  14. Inorder Traversal - Print In Order Current = Done Done InOrderPrint ( current^.left ) 34 Print ( current^.data ) InOrderPrint ( current^.right ) InOrderPrint ( current^.left ) InOrderPrint ( current^.left ) 25 45 Print ( current^.data ) Print ( current^.data ) InOrderPrint ( current^.right ) InOrderPrint ( current^.right ) Current = NIL InOrderPrint ( current^.left ) InOrderPrint ( current^.left ) InOrderPrint ( current^.left ) 21 29 52 Print ( current^.data ) Print ( current^.data ) Print ( current^.data ) InOrderPrint ( current^.right ) InOrderPrint (current^.right) InOrderPrint (current^.right) Current = NIL Current = NIL Current = NIL Current = NIL Current = NIL Current = NIL Output: 29 21 45 52 25 34

  15. Preorder Traversal • Traverse the tree “Preorder”: • Visit the current • Visit the tree’s left subtree • Visit right subtree Procedure Pre_Order( t_ptr isoftype ptr toa Tree_Node ) if ( t_ptr <> NIL ) then Do_whatever( t_ptr^.data ) Pre_Order( t_ptr^.left_child ) Pre_Order( t_ptr^.right_child) endif endprocedure

  16. Preorder Traversal Example: PreOrder Print Procedure PreOrderPrint ( current iot in Ptr toa Tree_Node) If ( current <> NIL ) then Print ( current^.data ) PreOrderPrint ( current^.left ) PreOrderPrint ( current^.right ) endif endprocedure

  17. Preorder Traversal – PreOrder Print Current = Done Done Print ( current^.data ) 34 PreOrderPrint ( current^.left ) PreOrderPrint ( current^.right ) Print ( current^.data ) Print ( current^.data ) 25 45 PreOrderPrint ( current^.left ) PreOrderPrint (current^.left) PreOrderPrint ( current^.right ) PreOrderPrint (current^.right) Current = NIL Print ( current^.data ) Print ( current^.data ) Print ( current^.data ) 21 29 52 PreOrderPrint (current^.left) PreOrderPrint ( current^.left ) PreOrderPrint (current^.left) PreOrderPrint (current^.right) PreOrderPrint (current^.right) PreOrderPrint (current^.right) Current = NIL Current = NIL Current = NIL Current = NIL Current = NIL Current = NIL Output: 29 45 52 34 21 25

  18. Postorder Traversal • Traverse the tree “Postorder”: • Visit the tree’s left subtree • Visit right subtree • Visit the current Procedure Post_Order(t_ptr isoftype ptr toa Tree_Node) if ( t_ptr <> NIL ) then Post_Order( t_ptr^.left_child ) Post_Order( t_ptr^.right_child) Do_whatever( t_ptr^.data ) endif endprocedure

  19. Postorder Traversal Example: PostOrder Print Procedure PostOrderPrt ( current iot in Ptr toa Tree_Node ) If ( current <> NIL ) then PostOrderPrint ( current^.left ) PostOrderPrint ( current^.right ) Print ( current^.data ) endif endprocedure

  20. Postorder Traversal–PostOrder Print Current = Done Done PostOrderPrt ( current^.left ) 34 PostOrderPrt ( current^.right ) Print ( current^.data ) PostOrderPrt ( current^.left ) PostOrderPrt (current^.left) 25 45 PostOrderPrt ( current^.right ) PostOrderPrt (current^.right) Print ( current^.data ) Print ( current^.data ) Current = NIL PostOrderPrt ( current^.left ) PostOrderPrt (current^.left) PostOrderPrt (current^.left) 21 29 52 PostOrderPrt (current^.right) PostOrderPrt (current^.right) PostOrderPrt (current^.right) Print ( current^.data ) Print ( current^.data ) Print ( current^.data ) Current = NIL Current = NIL Current = NIL Current = NIL Current = NIL Current = NIL Output: 29 52 45 21 34 25

  21. 84 L R 11 L R 28 L R 94 L R 76 L R 15 L R 84 L R 97 L R 21 L R 65 L R 57 L R Algorithm to Insert a Node into a BST • Algorithm Shell Tree_Node definesa record data isoftype Num left,right isoftype Ptr toa Tree_Node endrecord • Define the Record Algorithm Insert_in_a_BST endalgorithm • Declare the data • Load the Tree • Insert a new node root isoftype Ptr toa Tree_Node // Load the tree Insert_in_BST( root, 73 ) root

  22. Writing a Recursive Module to Insert a Node • Procedure template current isoftype in Ptr toa Tree_Node, • First argument value isoftype in Num ) • Second argument Procedure Insert_in_BST ( <argument>, <argument> ) // Purpose: insert a node in a BST // Preconditions: BST // Postconditions: BST with new node // unchanged if node already there endprocedure // Insert_in_BST • IF template • Terminating condition • Insert a new node • Do we go left or right? • Take a step closer if( <terminating> ) then else endif current = NIL • Make a recursive call current <- new( Tree_Node ) current^.data <- value current^.left <- NIL current^.right <- NIL current current if(current^.data > value) then elseif(current^.data < value) then endif Insert_in_BST( , value ) current^.left data data left right right Insert_in_BST( , value ) current^.right

  23. Web Slides • The previous power point slides are available on-line for review • http://www.cc.gatech.edu/classes/cs1501/ Developed by Cs1501 Presentations Guy Ettinger, Yisrael Lowenstein, & Bill Leahy

More Related