350 likes | 544 Views
Image Fusion for Context Enhancement and Video Surrealism. Ramesh Raskar Mitsubishi Electric Research Labs, (MERL). Adrian Ilie UNC Chapel Hill. Jingyi Yu MIT. Dark Bldgs. Reflections on bldgs. Unknown shapes. ‘Well-lit’ Bldgs. Reflections in bldgs windows. Tree, Street shapes.
E N D
Image Fusion for Context Enhancement and Video Surrealism Ramesh Raskar Mitsubishi Electric Research Labs, (MERL) Adrian Ilie UNC Chapel Hill Jingyi Yu MIT
Dark Bldgs Reflections on bldgs Unknown shapes
‘Well-lit’ Bldgs Reflections in bldgs windows Tree, Street shapes
Night Image Background is captured from day-time scene using the same fixed camera Context Enhanced Image Day Image
Pixel Blending Our Method:Integration of blended Gradients
Outline • Context Enhancement • Gradient-based Fusion • Video Enhancement • Surrealism
Gradient field Nighttime image x Y I1 G1 G1 Mixed gradient field x Y G G Importance image W I2 x Y G2 G2 Final result Daytime image Gradient field
Reconstruction from Gradient Field • Problem: minimize error |Ñ I’ – G| • Estimate I’ so that G = Ñ I’ • Poisson equation • Ñ 2 I’ = div G • Full multigrid solver GX I’ GY
Why Gradient-based Approach • Comparison of intensity values are important • Maintain gradients to capture local variations • Directly solve for desired gradients • Maintain subtle details • Mix dissimilar images • No need for precise segmentation
Comparison • Average • Subtle details are lost • Pixel-wise blending • Sharp transitions
Issues • Boundary conditions • Color shifts
Boundary Conditions • Assumed Neumann condition at borders, • Ñ I’ · N = 0, • Enforced by haloing image with blacks
Color Shift • Mixing dissimilar images • Goal: final image appearance matches input images at corresponding pixels Ifinal(x,y) = c1Ipoisson(x,y) + c2 • Solve Wi(x,y) Ioriginal(x,y) = c1Ipoisson(x,y) + c2 • Each color channel reconstructed separately
Outline • Context Enhancement • Gradient-based Fusion • Video Enhancement • Surrealism
Overview of Process Original night time traffic camera 320x240 video Day time image: By averaging 5 seconds of day video Input Output Enhanced video Note: exit ramp, lane dividers, buildings not visible in original night video, but clearly seen here. Mask frame (for frame above): Encodes pixel with intensity change
Algorithm Frame N Gradient field Mixed gradient field TimeAveraged importance mask Processed binary mask Final result Gradient field Frame N-1 Daytime image
Outline • Context Enhancement • Gradient-based Fusion • Video Enhancement • Related Work • Surrealism
Related Work • Spatio-temporal Composition • Duchamp (Nude descending a staircase) • Freeman 2002 • Fels 1999, Klein 2002, Cohen 2003 • Gradient-based Techniques • Multi-spectral: Socolinsky 1999 • Shadow removal: Weiss 2001 • High dynamic range: Fattal 2002 • Image editing: Perez 2003 • Some at Siggraph’04
Surrealism Rene Magritte, ‘Empire of the Light’
Outline • Context Enhancement • Gradient-based Fusion • Video Enhancement • Surrealism
Time-lapse Mosaics Maggrite Stripes time
Discussion • User Experience • More effective in conveying scene context • ‘Dreamy’ appearance • Nonrealistic : False conditions • Applications • Tools for artists • Surveillance • Amusement park rides • Performance • ~1 sec/frame for 320x240 • ~ 3 min for 4Mpixel image
Image Fusion for Context Enhancement • Nonrealistic but comprehensible context • Fusion using multiple images • Enhancing night images with day bgrnd • Gradient-based fusion • Video surrealism tools t