1 / 20

Pulsar Wind Nebulae

Observations of. Pulsar Wind Nebulae. Jet/Torus Structure in PWNe. Anisotropic flux with maximum energy flux in equatorial zone - radial particle outflow - striped wind from Poynting flux decreases away from equator Wind termination shock is farther from

oneida
Download Presentation

Pulsar Wind Nebulae

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Observations of Pulsar Wind Nebulae

  2. Jet/Torus Structure in PWNe • Anisotropic flux with • maximum energy flux • in equatorial zone • - radial particle outflow • - striped wind from • Poynting flux decreases • away from equator • Wind termination • shock is farther from • pulsar at equator • than along axis • Magnetization  is low • in equatorial region • due to dissipation in • striped wind • (reconnection?) • - no collimation along • equator; an equatorial • disk (i.e. torus) forms • At higher latitudes, • average B field is a • maximum • - this can turn the flow • inward at high latitudes, • collimating flow and • forming a jet beyond • TS, where flow is mildly • (or non-) relativistic Lyubarsky 2002

  3. + G + + + + F R Pulsar Wind Nebulae b • Expansion boundary condition at • forces wind termination shock at • - wind goes from v = c/31/2 inside Rw to • v ~ RN/t at outer boundary } Pulsar logarithmic radial scale • Pulsar wind is confined by pressure • in nebula • - wind termination shock Wind MHD Shock Blast Wave  Particle Flow Ha or ejecta shell • Pulsar accelerates • particle wind - spectral break at where synchrotron lifetime of particles equals SNR age - radial spectral variation from burn-off of high energy particles • wind inflates bubble • of particles and • magnetic flux • particle flow in B-field • creates synchrotron • nebula Slane et al. 2004

  4. Broadband Emission from PWNe Zhang et al. 2008 • Spin-down power is injected into the PWN at a • time-dependent rate • Based on studies of Crab Nebula, there appear to be • two populations – relic radio-emitting electrons and electrons injected in wind (Atoyan & Aharonian 1996) • Get associated synchrotron and IC emission from electron population, and some assumed B field (e.g. Venter & dE Jager 2006)

  5. Broadband Emission from PWNe Del Zanna et al. 2006 • More realistically, assume wind injected at • termination shock, with radial particle distribution • and latitude-dependent magnetic component: • Evolve nebula considering radiative and adiabatic • losses to obtain time- and spatially-dependent • electron spectrum and B field (e.g. Volpi et al. 2008) • - integrate over synchrotron and IC emissivity to • get spectrum Volpi et al. 2008

  6. Connecting the Synchrotron and IC Emission • Energetic electrons in PWNe produce both synchrotron and inverse-Compton emission • - for electrons with energy ETeV, • synchrotron • inverse-Compton • - comparing photon energies from given electron • population gives B (e.g. Atoyan & Aharonian 1999) • Similarly, relative fluxes fE = E2 f(E) = nSngive B: • For low B, synchrotron lifetime is long, and fic/fs is large • - can expect bright TeV emission from collection of long-lived electrons

  7. A Point About Injection: 3C 58 • 3C 58 is a bright, young PWN • - morphology similar to radio/x-ray; suggests • low magnetic field • - low-frequency spectral break suggests • possible injection break • PWN and torus region observed in • Spitzer/IRAC and CFHT observations • - jet structure not seen above diffuse emission Slane et al. 2004

  8. A Point About Injection: 3C 58 • 3C 58 is a bright, young PWN • - morphology similar to radio/x-ray; suggests • low magnetic field • - low-frequency spectral break suggests • possible injection break • PWN and torus region observed in • Spitzer/IRAC and CFHT observations • - jet structure not seen above diffuse emission Nebula Synchrotron Break Flux Density Injection E

  9. Spitzer Observations of 3C 58 • 3C 58 is a bright, young PWN • - morphology similar to radio/x-ray; suggests • low magnetic field • - low-frequency spectral break suggests • possible injection break • PWN and torus region observed in • Spitzer/IRAC and CFHT observations • - jet structure not seen above diffuse emission VLA IRAC 4.5m Bietenholz 2006 Chandra IRAC 3.6m Slane et al. 2004 Slane et al. 2008

  10. Spitzer Observations of 3C 58 • 3C 58 is a bright, young PWN • - morphology similar to radio/x-ray; suggests • low magnetic field • - low-frequency spectral break suggests • possible injection break • PWN and torus region observed in • Spitzer/IRAC and CFHT observations • - jet structure not seen above diffuse emission • IR flux for entire nebula falls within • extrapolation of x-ray spectrum • - indicates single break just below IR • - sub-mm observations would be of interest • Torus spectrum requires change in • slope between IR and x-ray bands • - challenges assumptions of single power • law for injection into nebula; TeV observations • should provide constraints Slane et al. 2008 Slane et al. 2008

  11. Spitzer Observations of 3C 58 • 3C 58 is a bright, young PWN • - morphology similar to radio/x-ray; suggests • low magnetic field • - low-frequency spectral break suggests • possible injection break • PWN and torus region observed in • Spitzer/IRAC and CFHT observations • - jet structure not seen above diffuse emission • IR flux for entire nebula falls within • extrapolation of x-ray spectrum • - indicates single break just below IR • - sub-mm observations would be of interest • Torus spectrum requires change in • slope between IR and x-ray bands • - challenges assumptions of single power • law for injection into nebula; TeV observations • should provide constraints PRELIMINARY

  12. Kes 75 Ng et al. 2008 • Bright wind nebula powered by PSR J1846-0258 (Edot = 1036.9) • - jet-like structure defines rotation axis (Helfand et al. 2003) • Deep Chandra observation reveals moving clumps, arc-like structure, Crab-like bays, • inner/outer jet features, and abrupt jet termination in south (Ng et al. 2008) • - best-fit structure to ordered structure yields jet/torus with clump in north • - jet spectrum is harder than surrounding regions, suggesting high-velocity flow

  13. Kes 75 Ng et al. 2008 • Spectral index shows general steepening with radius • in diffuse nebula • HESS observations reveal VHE g-ray emission • - Lx/Lg B ~ 15 mG , consistent w/ large X-ray size • RXTE observations reveal magnetar-like bursts from • PSR J1846-0258 (Gavril et al. 2008) • - Chandra observation reveal brightening of pulsar as well • - also see brightening of northern clump and inner jet • (though unrelated to bursts given flow timescales) See also poster E11.62: (S. Safi-Harb et al.) Djannati-Atai et al. 2008

  14. HESS J1640-465 Lemiere et al. 2008 5 arcmin • Extended source identified in HESS GPS • - no known pulsar associated with source • - may be associated with SNR G338.3-0.0 • XMM observations (Funk et al. 2007) identify extended • X-ray emission, securing an associated X-ray PWN • Chandra observations (Lemiere et al. 2008) reveal point source within extended nebula, • apparently identifying associated neutron star • - HI absorption indicates a distance d ~ 8 – 13 kpc • - Lx ~ 1033.1erg s-1 Edot ~ 1036.7erg s-1 • - X-ray and TeV spectrum well-described by leptonic model with B ~ 6 mG and t ~ 15 kyr

  15. Reverse Shock PWN Shock Forward Shock Pulsar Termination Shock Pulsar Wind Unshocked Ejecta Shocked Ejecta Shocked ISM PWN ISM PWNe and Their SNRs • Pulsar Wind • - sweeps up ejecta; shock decelerates • flow, accelerates particles; PWN forms • Supernova Remnant • - sweeps up ISM; reverse shock heats • ejecta; ultimately compresses PWN; particles accelerated at forward shock generate • magnetic turbulence; other particles scatter off this and receive additional acceleration Gaensler & Slane 2006

  16. Vela X RS interaction displaces PWN, produces turbulent structures, and mixes in ejecta t = 10,000 yr t = 20,000 yr t = 30,000 yr t = 56,000 yr Blondin et al. 2001 van der Swaluw, Downes, & Keegan 2003 • Vela X is the PWN produced by the Vela pulsar • - located primarily south of pulsar • - apparently the result of relic PWN being disturbed by asymmetric passage of the • SNR reverse shock (e.g. Blondin et al. 2001) • Elongated “cocoon-like” hard X-ray structure extends southward of pulsar • - clearly identified by HESS as an extended VHE structure • - this is not the pulsar jet (which is known to be directed to NW); presumably the • result of reverse shock interaction

  17. Vela X LaMassa et al. 2008 • XMM spectrum shows nonthermal and ejecta-rich thermal emission from end of cocoon • - reverse-shock crushed PWN and mixed-in ejecta? • Radio, X-ray, and -ray measurements appear consistent with synchrotron and I-C • emission from power law particle spectrum w/ two spectral breaks • - density derived from thermal emission 10x lower than needed for pion-production to • provide observed g-ray flux • - much larger X-ray coverage of Vela X is required to fully understand structure

  18. Vela X de Jager et al. 2008 • Radio and VHE spectrum for entire PWN suggests presence of two distinct electron populations • - radio-emitting particles may be relic population; higher energy electrons injected by pulsar • Maximum energy of radio-emitting electrons not well-constrained • - this population will generate IC emission in GLAST band; spectral features will identify • indentify emission from distinct up-scattered photon populations • - upcoming observations will provide strong constraints on this electron population

  19. G327.1-1.1: Another Reverse-Shock Interaction Temim et al. 2008 • G327.1-1.1 is a composite SNR • with a bright central nebula • - nebula is offset from SNR center • - “finger” of emission extends toward • northwest • X-ray observations reveal compact • source at tip of radio finger • - trail of emission extends into nebula • - Lx suggests Edot ~ 1037.3 erg s-1 • Compact X-ray emission is extended; presumably pulsar torus • - PWN has apparently been disturbed by SNR reverse shock, • and is now re-forming around pulsar, much like Vela X et al. • Curious prong-like structures extend in direction opposite the • relic PWN • - these prongs appear to connect to a bubble blown by the • pulsar in the SNR interior, apparently in the region recently • crossed by the reverse shock See poster E11.57: Chandra and XMM Observations of the Composite SNR G327.1-1.1 (Tea Temim et al.)

  20. Conclusions • PWNe are reservoirs of energetic particles injected from pulsar • - morphology of nebulae reveals underlying geometry • - synchrotron and inverse-Compton emission places strong constraints • on the underlying particle spectrum and magnetic field • Modeling of broadband emission constrains evolution of particles and B field • - modeling form of injection spectrum and full evolution of particles still • in its infancy • Reverse-shock interactions between SNR and PWNe distort nebula and • may explain TeV sources offset from pulsars • - multiwavelength observations needed to secure this scenario (e.g. Vela X. • HESS J1825-137, and others) • Low-field, old PWNe may fade from X-ray view, but still be detectable sources • of TeV emission • - VHE g-ray surveys are likely to continue uncovering new members of this class

More Related