430 likes | 1.01k Views
Development of High Average Power Femtosecond Amplifiers with Ytterbium- doped crystals. Sandrine RICAUD PhD supervisor: Frédéric DRUON Thèse Cifre with Amplitude Sytèmes . Introduction. A femtosecond pulse or 10 -15 second ?. Pulses are Fourier limited if: . t = 0,315
E N D
Development of High Average Power FemtosecondAmplifierswith Ytterbium-dopedcrystals Sandrine RICAUD PhD supervisor: Frédéric DRUON Thèse Cifre with Amplitude Sytèmes
Introduction A femtosecond pulse or 10-15 second? Pulses are Fourier limited if: .t = 0,315 Pulses with t = 100 fs =12 nm centered at 1050 nm Shorter pulses broader spectrum
Hot topics • Diode-pumped solid-state laser • High repetition rate, high energy (high average power) • Search for new materials, to generate ultra-short pulses ~ 100 fs
Advantage of ytterbium • Diode-pumped laser (980 nm) • Large emission cross section • tens of nm for Yb3+ • < 1 nm for Nd3+ • Simple structure • No quenching even for closed Yb3+ ions... • Small quantum defect • Ideal candidate for diode-pumped • femtosecond laser
Ytterbium-dopedmaterials Collaborations: CIMAP LCMCP Sc2O3 Y2O3 YAG Thermal conductivity (W/m/K) CaF2 GGG CALGO SrF2 LSO YVO4 SFAP YSO KGW YCOB glass BOYS KYW SYS GdCOB Emission bandwidth (nm) For High power For Short pulses
Ca Ca F F Ca F F Yb3+:CaF2 Ca Ca CaF2 interest • Exception to the rule: good spectroscopic and thermal properties • Well-known crystal (undoped), good growth control • Cubic structure (isotrop) Yb(2.6%):CaF2 grown by the Bridgman process
Chirped Pulse Amplification D. Strickland and G. Mourou, "Compression of Amplified Chirped Optical Pulses," Optics Comm. 56, 219 (1985).
Chirped Pulse Amplification Yb:CALGO 15 nm, <100 fs 27 MHz Yb:CaF2 regenerative amplifier 100-10 kHz D. Strickland and G. Mourou, "Compression of Amplified Chirped Optical Pulses," Optics Comm. 56, 219 (1985).
Yb:CALGOoscillator 27 MHz, sub 100-fs, 15 nm bandwidth centered at 1043 nm
Yb:CaF2 amplifier • Maximum energy plateau up to 300 Hz : 1.6 mJ / 700 µJ (uncompressed / compressed) • Higher repetition rate : 10 kHz 1.4W / 0.6W • (uncompressed / compressed) Beam profile : Gaussian shape with M2 < 1.1
SHG FROG trace at 500 Hz At 500 Hz repetition rate : - pulse duration : 178 fs - pulse energy : 1.4 mJ before compression 620 µJ after compression - optical-to-optical efficiency : 4.5 % 178 fs 8.5 nm Measured Retrieved 15 nm
Conclusion • Diode-pumped room-temperature regenerative Yb:CaF2 amplifier operating at low and high repetition rate. • Short pulses up to 1 kHz repetition rate (178 fs at 500 Hz). • Maximum extracted energy : 1.6 mJ/0.7 mJ (before / after compression). • Highest average power : 1.4 W/0.6 W (before / after compression). • Optical efficiency ranging from 5 to 10%. S. Ricaud et al., "Short pulse and high repetition rate diode-pumped Yb:CaF2 regenerative amplifier" Opt. Lett. 35, 2415-2417 (July 2010)
Perspectives • Cooling crystals to cryogenic temperature (better thermal and spectroscopic properties) S. Ricaud et al., “Highly efficient, high-power, broadly tunable, cryogenically cooled and diode-pumped Yb:CaF2”, Opt. Lett. , vol. 35, p.3757 (2010) S. Ricaud et al., “High-power diode-pumped cryogenically-cooled Yb:CaF2 laser with extremely low quantum defect”, submitted • Thin-Disk technology (better cooling, pump recycling)
Spectroscopy V. Petit et al (Appl. Phys. B, 2004) Ca2+ Yb3+ Charge compensation Crystalline reorganization Clusters Broad absorption and fluorescence spectra • Diode pumping • Tunability / ultrashort pulses • Long emission lifetime (2.4 ms) Hexameric cluster
Thermal properties Y2O3 Favorable directions YAG CaF2 SrF2 CALGO LSO YVO4 KGW YSO BOYS SYS S-FAP glass
Regenerative Amplifier Grating compressor 1600 l/mm M4 Diode-pumped CPA laser chain FR PC Fs-oscillator FWHM bandwidth: 15 nm 27 MHz Grating stretcher 1600 l/mm 260 ps M2 M3 λ/2 TFP TFP Mirror R=300mm M1 TFP: Thin-Film Polarizer FR: Faraday Rotator PC: Pockels Cell Laser diode 16 W @ 980 nm Ø=200µm Mirror R=300mm 50 mm triplets Dichroic mirror Yb:XxF2 Yb:CaF2 : 2.6-%-doped 5-mm-long Yb:SrF2 : 2.9-%-doped 4-mm-long
Advantages of cryogenictemperature • Lower laser levels become less thermally populated: lower laser threshold, higher efficiency • Better thermal properties (thermal conductivity, coefficient of thermal expansion) • Emission and absorption cross sections increase: higher gain but more structured Higher average power system
Spectroscopicpropertiesat 77K Saturation intensity: 17 kW/cm2compared to 33 kW/cm2 at room temperature S. Ricaud et al., “Highly efficient, high-power, broadly tunable, cryogenically cooled and diode-pumped Yb:CaF2”, Opt. Lett. , vol. 35, p.3757 (2010)
Interest of cryogeny 68 W/m/K @ 77K 10 W/m/K @ 300K G. A. Slack, "Thermal Conductivity of CaF2, MnF2, CoF2, and ZnF2 Crystals" Phys. Rev. 122, 1451–1461 (1961).
Experimental setup OC: Output Coupler P: Powermeter
Cwregimeresults OC: 10% Maximal incident pump power: 212W 97 W ! Absorption : - 74 W( saturated) without laser - Up to 150 W with laser • High pump power: 245W • High efficiency > 60% • Good beam quality maintained • Measured thermo-optic coefficient around -11 x10-6 K-1 (theory -3.1 x10-6 K-1 ) • Small signal gain estimation: 3.1
Tunability curve Quantum defect 1.1% (992 nm) Yb:CaF2 Laser diode 245 W @ 979 nm Ø=400µm Prism 2% OC P
Crystal choice Glass (amorphous) Crystals with complex structure Crystals with simple structure (W m-1 K-1) Materials l (nm) Yb:YAG = 10 9 Yb:Verre 35 = 0,8
Crystal choice Glass (amorphous) Crystals with complex structure Crystals with simple structure Ideal crystal (W m-1 K-1) Materials l (nm) Yb:YAG = 10 9 Yb:Verre 35 = 0,8
Conclusion • First laser operation of a singly doped Yb:CaF2 at a cryogenic temperature and high power level • Promissing results at cryogenic temperature: • Efficiency up to 70% • Output power ~ 100W • Small signal gain: 3.1 • Broad laser wavelength tunability • High gain at 992 nm
Outline • Materialproperties -Yb:CaF2interest - Advantages of cryogenictemperature • Yb:CaF2propertiesat 77K • High power laser • Experimental setup • Cwregimeresults • Conclusion
600 800 1000 1200 1400 1600 1800 2000 Choix des matériaux • Spectre d’émission large (lié à l’ion dopant et à la matrice) Nd3+ Cr4+:YAG Cr4+:forsterite Ti3+:Saphir Cr3+:LiSAF Tm3+:verre Yb3+ Er3+:verre nm • Pompage avec des diodes laser de puissance • -- 808 et 880 nm => ion dopantNéodyme • -- 940 et 980 nm => ion dopantYtterbium
Yb:CaF2 background at room temperature • Laser wavelength tunability: 50nm • Thermal behaviour: κ~9.7 W.m-1.K-1 undoped, κ~6 W.m-1.K-1 2.7%-doped • ML oscillator: 99fs, 380mW • Regenerative amplifier: 215fs @1Hz, 17.3 mJ before compression 178fs @ 500Hz, 1.8mJ before compression • Multipass amplifier: 192fs @1Hz, 420mJ before compression A. Lucca et al., “High-power tunable diode-pumped Yb3+:CaF2 laser ”, Opt. Lett., vol. 29, p.1879 (2004) J. Boudeile et al., “Thermal behaviour of ytterbium-doped fluorite crystals under high power pumping ”, Opt. Exp., vol. 16 (2008) F. Friebel et al., “Diode-pumped 99fs Yb:CaF2 oscillator”, Opt. Lett., vol. 34, p.1474 (2009) S. Ricaud et al., “Short-pulse and high-repetition-rate diode-pumped Yb:CaF2 regenerative amplifier”, Opt. Lett., vol. 35 (2010) M. Siebold et al., “Broad-band regenerative laser amplification in ytterbium-doped calcium fluoride (Yb:CaF2) ”, Ap. Phys. B 89 (2007) M. Siebold et al., “Terawatt diode-pumped Yb:CaF2 laser”, Opt. Lett., vol. 33, p.2770 (2008)
Gain estimation Experimental small signal gain: Go=3.1 Inversion population estimated: β=0.4
Watch out for the doping * R. Gaumé, et al. "A simple model for the prediction of thermal conductivity in pure and doped in saluting crystals," Appl. Phys. Let. 83, 1355-1357 (2003).
Thermal properties 68 W/m/K @ 77K 10 W/m/K @ 300K G. A. Slack, "Thermal Conductivity of CaF2, MnF2, CoF2, and ZnF2 Crystals" Phys. Rev. 122, 1451–1461 (1961).
Thermal properties using the Gaumé’s model [*] and assuming a sound velocity of 6000 m/s at 77 K * R. Gaumé, et al. "A simple model for the prediction of thermal conductivity in pure and doped in saluting crystals," Appl. Phys. Let. 83, 1355-1357 (2003).