150 likes | 303 Views
Transmission electron micrograph of interface between glass-ceramic A-W and rat tibia. Ion concentrations of human blood plasma and SBF. Concentration / mM. Na + K + Mg 2+ Ca 2+ Cl - HCO 3 - HPO 4 2- SO 4 2-.
E N D
Transmission electron micrograph of interface between glass-ceramic A-W and rat tibia.
Ion concentrations of human blood plasma and SBF Concentration / mM Na+ K+ Mg2+ Ca2+ Cl- HCO3- HPO42- SO42- Blood plasma142.0 5.0 1.5 2.5 103.8 27.0 1.0 0.5 SBF 142.0 5.0 1.5 2.5 148.8 4.2 1.0 0.5 SBF (pH 7.40, 36.5ºC) Sample Soaking in a simulated body fluid (SBF).
Surface apatite Surface apatite Surface apatite Surface apatite Surface apatite A-W Surface apatite Surface apatite Surface apatite A-W A-W A-W A-W A-W A-W A-W A-W Surface apatite Surface apatite Surface apatite Surface apatite A-W Surface apatite A-W A-W A-W Surface apatite A-W A-W Surface apatite Surface apatite A-W Surface apatite A-W TEM photograph of the interface between glass-ceramic A-W and apatite layer formed in SBF.
Stoichiometric hydroxyapatite Ca10(PO4)6(OH)2 CO32- HPO42- Na+ Mg2+ Cl- F- Bone apatite Composition of apatite.
Bone (Apatite and collagen) Body fluid Carbonate ion-containing hydroxyapatite of defective structure and/or small crystallites Glass-ceramic A-W
Transmission electron micrograph of an interface between glass-ceramic A-W and rat tibia 7 d after implantation.
SEM picture of glass-ceramic A-W implanted into a tibia of rabbit as a function of time after implantation.
Transmission electron micrograph of an interface between glass-ceramic A-W and rat tibia 14 d after implantation.
The essential requirement for artificial materials to bond to living bone is the formation of a bonelike apatite layer on their surfaces in living body.
SiO2 : Apatite formation : No apatite formation : Dissolution 20 80 40 60 Glass formation 60 40 20 80 20 40 60 80 P2O5 CaO mol% Compositional dependence of apatite formation on the surface of glasses in the CaO-P2O5-SiO2 system after soaking in SBF for 28 days.
Apatite Silica gel Silica gel Silica gel Apatite Silica gel Apatite Apatite Apatite Silica gel Apatite Apatite Silica gel Apatite Silica gel Silica gel Apatite Apatite Silica gel Silica gel Apatite Apatite Apatite Silica gel Silica gel Silica gel Apatite Silica gel Silica gel Apatite Apatite Apatite Silica gel Silica gel 10µm 10µm 10µm 10µm 10µm 10µm 10µm 10µm 10µm 10µm Apatite layer formed on silica gel in SBF.
Titania gel Titania gel Apatite Apatite Apatite Apatite Apatite Apatite Apatite Titania gel Titania gel Titania gel Titania gel Apatite Titania gel Titania gel Apatite Apatite Titania gel Apatite Apatite Apatite Apatite Titania gel Titania gel Titania gel Titania gel Titania gel Apatite Apatite Titania gel Titania gel Titania gel Apatite 10µm 10µm 10µm 10µm 10µm 10µm 10µm 10µm 10µm 10µm Apatite formation induced on titania gel in SBF.
P a s s i v e T i O l a y e r 2 A m o r p h o u s s o d i u m t i t a n a t e T i T i O 2 T i N a O H s o l u t i o n + H T i O + N a 3 S o d i u m t i t a n a t e h y d r o g e l T i O 2 T i B e f o r e t r e a t m e n t A f t e r N a O H t r e a t m e n t A f t e r h e a t t r e a t m e n t Structural change of the surface of Ti metal with NaOH and heat treatment.