210 likes | 305 Views
Cyber Intrusion Detection Algorithm Based on Bayes’ Theorem. Stephanie Steren-Ruta - West High School ‘12 Syeda Faiza Islam- Farragut High School ‘15 Young Scholars Program July 17, 2012 Knoxville, Tennessee. The problem. Securing the Smart Grid Effective ways.
E N D
Cyber Intrusion Detection Algorithm Based on Bayes’ Theorem Stephanie Steren-Ruta- West High School ‘12 SyedaFaizaIslam- Farragut High School ‘15 Young Scholars Program July 17, 2012 Knoxville, Tennessee
The problem • Securing the Smart Grid • Effective ways
Terms • Intrusion Detection • Pattern recognition • Bayes Theorem • Maximum a-posterior probability (MAP)
Intrusion Detection • identify unauthorized use, misuse and abuse of computer systems by both system insiders and external predators.
Types of Intrusions • Denial of Service (DOS) • Remote to Local (R2L) • User to Root (U2R) • Probing
Pattern Recognition • identifying the patterns in a set of data and classifying and categorizing it
Bayes' Theorem • is a mathematical formula used for calculating conditional probabilities
Maximum a-posterior probability (MAP) • Assigning to the sample of interest the membership based on which the sample has the highest a-posterior probability.
Discriminant Function =ln +ln[P(B)]
Analysis of Data • Have a training data and testing data that have results. • Take the training and separate into the different categories • Acquire the covariance and mean • Make a loop that tests all categories with the discriminant function • Check for accuracy • Change prior-probability until acquiring most accurate result
Code • for i=1:length(test_data); • current_entry = test_data(i,:); • Function_1 = (-.5*((current_entry-mean_1)*inv(cov_1)*(current_entry-mean_1)'))-(.5*(log(det(cov_1))))+(log(.7));%Table_0 discriminant function • Function_2 = (-.5*(current_entry-mean_2)*inv(cov_2)*(current_entry-mean_2)')-(.5*(log(det(cov_2))))+(log(.0025));%Table_1 discriminant function • Function_3 = (-.5*((current_entry-mean_3)*inv(cov_3)*(current_entry-mean_3)'))-(.5*(log(det(cov_3))))+(log(.0025));%Table_0 discriminant function • Function_4 = (-.5*(current_entry-mean_4)*inv(cov_4)*(current_entry-mean_4)')-(.5*(log(det(cov_4))))+(log(.05));%Table_1 discriminant function • Function_5 = (-.5*((current_entry-mean_5)*inv(cov_5)*(current_entry-mean_5)'))-(.5*(log(det(cov_5))))+(log(.2));%Table_0 discriminant function • [C,I] = max([Function_1,Function_2,Function_3,Function_4,Function_5]); • Decision(i,1)= I; • end
Results • Accuracy • Prior Probability
Confusion Matrix 1-DOS 2- R2L 3- U2R 4- Probing 5- Normal Connection 1 2 3 4 5 1 2 3 4 5
1 2 3 4 5 1 2 3 4 5
Error • Future Improvements
References • [1]Mukherjee, B.; Heberlein, L.T.; Levitt, K.N.; , "Network intrusion detection," Network, IEEE , vol.8, no.3, pp.26-41, May-June 1994doi: 10.1109/65.283931URL: http://ieeexplore.ieee.org.proxy.lib.utk.edu:90/stamp/stamp.jsp?tp=&arnumber=283931&isnumber=7023 • [2]Jain, A.K.; Duin, R.P.W.; Jianchang Mao; , "Statistical pattern recognition: a review," Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.22, no.1, pp.4-37, Jan 2000doi: 10.1109/34.824819URL: http://ieeexplore.ieee.org.proxy.lib.utk.edu:90/stamp/stamp.jsp?tp=&arnumber=824819&isnumber=17859 • [3]Anonymous. Maximum Security: A Hacker's Guide to Protecting Your Internet Site and Network, Chapter 15, pp. 359-362. Sams.net , 201 West 103rd Street, Indianapolis, IN, 46290. 1997. • [4] SimsonGarfinkel and Gene Spafford. Practical Unix & Internet Security. O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol CA, 95472, 2nd edition, April 1996. • [5]. N.p., n.d. Web. 10 Jul 2012. <http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/docs/attackDB.html • [6]Joyce, James, "Bayes' Theorem", The Stanford Encyclopedia of Philosophy (Fall 2008 Edition), Edward N. Zalta (ed.), URL = <http://plato.stanford.edu/archives/fall2008/entries/bayes-theorem/>.