550 likes | 688 Views
MOHANRAJ .S 82006106019 RENGANATHAN.P 82006106030 PRASANNA.V 82006106309 Mrs. S.SUGANTHI M.E., (Ph.D)., Professor & Head Of the Department.
E N D
MOHANRAJ .S 82006106019 RENGANATHAN.P 82006106030 PRASANNA.V 82006106309 Mrs. S.SUGANTHI M.E., (Ph.D)., Professor & Head Of the Department Intelligent Feature-guided Multi-objectTracking Using Kalman Filter CREATIVE THINKERS… GUIDED BY
INTELLIGENT FEATURE - GUIDEDMULTI - OBJECTTRACKINGUSINGKALMAN FILTERUSING TECHNOLOGIES ELYSIUM DIGITAL VIDEO PROCESSING
OVERVIEW • What do you mean by tracking ? • What is Kalman Filter ? • What are the different types of filters available ? • Why do we prefer Kalman Filter in our project ? • What are the conditions observed when objects are being tracked in real time ? • What is the existing system ? • What is our contribution in this project ?
Scope of the Project In this project, we proposed an idea of intelligent feature-guided tracking using Kalman filtering. • A new method is developed named Correlation-Weighted Histogram Intersection (CWHI), in which correlation weights are applied to Histogram Intersection (HI) method. • We focus on multi-object tracking in traffic sequences and our aim is to achieve efficient tracking of multiple moving objects under the confusing situations. • The proposed algorithm achieves robust tracking with 97.3% accuracy and 0.07% covariance error in different real-time scenarios.
Modules Load Video Frame Conversion Video Segmentation Kalman Filter Algorithm
Get Video • % --- Executes on button press in getvideo. • function getvideo_Callback(hObject, eventdata, handles) • % hObject handle to getvideo (see GCBO) • % eventdata reserved - to be defined in a future version of MATLAB • % handles structure with handles and user data (see GUIDATA) • clc • global vfilename; • global m; • global sfrom; • [ vfilename, vpathname ] = uigetfile( '*.avi', 'Select an image to segment' ); • m=aviread(strcat( vpathname, vfilename )); • sfrom=strcat( vpathname, vfilename ); • fileinfo = aviinfo(sfrom); • copyfile(sfrom,'./frame'); • vfile=strcat('./frame/',vfilename); • vfile=strcat(vfile, ' ... Frames : ',num2str(fileinfo.NumFrames),' ... ImageType : ',fileinfo.ImageType); • set(handles.axes1,'HandleVisibility','on','Visible','on','Units','pixels'); • movie(m); • set(handles.axes1,'HandleVisibility','callback');
Get Video We used the function aviread - to import the video & the function movie - to display it.
Frame Conversion • % --- Executes on button press in splitframes. • function splitframes_Callback(hObject, eventdata, handles) • % hObject handle to splitframes (see GCBO) • % eventdata reserved - to be defined in a future version of MATLAB • % handles structure with handles and user data (see GUIDATA) • global sfrom; • global test; • global z; • global mframes; • global test • fileinfo = aviinfo(sfrom); • mframes=fileinfo.NumFrames; • %fileinfo.FramesPerSecond; • mwidth=fileinfo.Width; • mheight=fileinfo.Height; • mframes; • mwidth; • mheight; • %declare array • M_Array=[];
Frame Conversion • % reading one frame at a time and storing it in to array • for i=1:fileinfo.NumFrames; • mov=aviread(sfrom,i); • M_Array=[M_Array mov]; • end • O_Array=[]; • %M_Array=[]; • test=fileinfo.NumFrames; • y=sqrt(test); • z=round(y)+1; • h=figure; • for j=1:fileinfo.NumFrames • %montage(image,map);%displays the images in new figure • [image,map]=frame2im(M_Array(j)); • outfile=strcat(num2str(j),'.jpg'); • figure(h),subplot(z,z,j),imshow(image,map); • imwrite(image,outfile); • movefile(outfile,'./frame'); • end
Frame Conversion • % --- Executes on button press in exit. • function exit_Callback(hObject, eventdata, handles) • % hObject handle to exit (see GCBO) • % eventdata reserved - to be defined in a future version of MATLAB • % handles structure with handles and user data (see GUIDATA) • close all • % --- Executes on button press in next. • function next_Callback(hObject, eventdata, handles) • % hObject handle to next (see GCBO) • % eventdata reserved - to be defined in a future version of MATLAB • % handles structure with handles and user data (see GUIDATA) • segf;
Video Segmentation • % --- Executes on button press in segfr. • function segfr_Callback(hObject, eventdata, handles) • % hObject handle to segfr (see GCBO) • % eventdata reserved - to be defined in a future version of MATLAB • % handles structure with handles and user data (see GUIDATA) • global test; • global z; • k=5; • map=3; • for i=1:test • ima=strcat(num2str(i),'.jpg'); • ima=strcat('./frame/',ima); • imr=imread(ima); • imr=rgb2gray(imr); • [mu,mask]=fcmeans(imr,k); • axes(handles.axes1); • set(handles.axes1,'HandleVisibility','on','Visible','on','Units','pixels'); • imagesc(mask); • set(handles.axes1,'HandleVisibility','callback'); • %figure(h),subplot(z,z,i),imagesc(mask),colormap(gray); • end
Features • % --- Executes on button press in features. • function features_Callback(hObject, eventdata, handles) • % hObject handle to features (see GCBO) • % eventdata reserved - to be defined in a future version of MATLAB • % handles structure with handles and user data (see GUIDATA) • global mframes; • global vfs; • wb=waitbar(0,'Please wait...'); • vfs=cell(1,mframes); • for i=1:mframes • fna=strcat(num2str(i),'.jpg'); • fna=strcat('./frame/',fna); • im=imread(fna); • im=rgb2gray(im); • nper=(i/mframes)*100; • nper1=num2str(round(nper)); • nper1=strcat(nper1, '%'); • tit=strcat('Find Feature .... ',nper1); • tit=strcat(tit, ' >> File Processing... '); • tit=strcat(tit,fna); • waitbar(nper/100,wb,tit);
Features • F=getfeatures(im); • vfs{i}=gf; • end • for i=1:mframes • %struct2cell(vfs(i)) • end • close(wb);
Kalman • % --- Executes on button press in kalman. • function kalman_Callback(hObject, eventdata, handles) • % hObject handle to kalman (see GCBO) • % eventdata reserved - to be defined in a future version of MATLAB • % handles structure with handles and user data (see GUIDATA) • kalmanf
Kalman • % --- Executes on button press in kalmanfilter. • function kalmanfilter_Callback(hObject, eventdata, handles) • % hObject handle to kalmanfilter (see GCBO) • % eventdata reserved - to be defined in a future version of MATLAB • % handles structure with handles and user data (see GUIDATA) • avi = aviread('samplevideo.avi'); • video = {avi.cdata}; • for a = 1:length(video) • imagesc(video{a}); • axis image off • drawnow; • end; • disp('output video'); • Kalmantracking(video);
Kalman • % --- Executes on button press in originalvideo. • function originalvideo_Callback(hObject, eventdata, handles) • % hObject handle to originalvideo (see GCBO) • % eventdata reserved - to be defined in a future version of MATLAB • % handles structure with handles and user data (see GUIDATA) • % --- Executes on button press in exit. • function exit_Callback(hObject, eventdata, handles) • % hObject handle to exit (see GCBO) • % eventdata reserved - to be defined in a future version of MATLAB • % handles structure with handles and user data (see GUIDATA) • close all
Histogram • function [mu,mask]=fcmeans(ima,k) • % check image • ima=double(ima); • copy=ima; % make a copy • ima=ima(:); % vectorize ima • mi=min(ima); % deal with negative • ima=ima-mi+1; % and zero values • s=length(ima); • % create image histogram • m=max(ima)+1; • h=zeros(1,m); • hc=zeros(1,m); • for i=1:s • if(ima(i)>0) h(ima(i))=h(ima(i))+1;end; • end • ind=find(h); • hl=length(ind); • % initiate centroids • mu=(1:k)*m/(k+1); • % start process • while(true) • oldmu=mu;
mean calculation • % current classification • for i=1:hl • c=abs(ind(i)-mu); • cc=find(c==min(c)); • hc(ind(i))=cc(1); • end • %recalculation of means • for i=1:k, • a=find(hc==i); • mu(i)=sum(a.*h(a))/sum(h(a)); • end • if(mu==oldmu) break;end; • end • % calculate mask • s=size(copy); • mask=zeros(s); • for i=1:s(1), • for j=1:s(2), • c=abs(copy(i,j)-mu); • a=find(c==min(c)); • mask(i,j)=a(1); • end • end • mu=mu+mi-1; % recover real range
get features • % function GETFEATURES extracts features from the pre-processed image • % input: Xp - pre-processed image obtained by calling function • % process_image • % output: F - A five-dimensional feature vector • function F = getfeatures(X) • global minpix • global rangepix • global sum_edge • global sum_locvar • global numObjects • % pre-processing • %Xp = process_image(X); • Xp = X;
get features • % extracting features • minpix = min_pixval(Xp); • rangepix = range_pixval(Xp); • sum_edge = sumof_edge(Xp); • sum_locvar = sumof_localvar(Xp); • numObjects = numberofobjects(Xp); • %correl=correlation(Xp); • %entro=entropy('tumor.jpg'); • %contra=contrast(Xp); • %idm1=idm(Xp); • %homog=homogeneity('tumor.jpg'); • %histo=sum(sum(histogram(Xp))); • F = [minpix;rangepix;sum_edge;sum_locvar;numObjects]; • features.v=minpix; • features.v1=rangepix; • features.v2=sum_edge; • features.v3=sum_locvar; • features.v4=numObjects; • save(['features.mat'], 'features')
get features • % extracting features • minpix = min_pixval(Xp); • rangepix = range_pixval(Xp); • sum_edge = sumof_edge(Xp); • sum_locvar = sumof_localvar(Xp); • numObjects = numberofobjects(Xp); • %correl=correlation(Xp); • %entro=entropy('tumor.jpg'); • %contra=contrast(Xp); • %idm1=idm(Xp); • %homog=homogeneity('tumor.jpg'); • %histo=sum(sum(histogram(Xp))); • F = [minpix;rangepix;sum_edge;sum_locvar;numObjects]; • features.v=minpix; • features.v1=rangepix; • features.v2=sum_edge; • features.v3=sum_locvar; • features.v4=numObjects; • save(['features.mat'], 'features')
value of pixel • % this function calculate a minimum value of pixel intensity • % for each image after pre-processing to remove shadow • function mp = min_pixval(X3) • global minpix • % waitbar(10); • X = double(X3); • [m, n]=size(X); • % histogram of pixel intensity of original • [NX,bX] = HIST(reshape(X,m*n,1)); • % num_thres = 5000; • % mp = min(bX(find(NX >= num_thres))); • mp = min(bX(find(NX)));
value of pixel • % this function calculate a minimum value of pixel intensity • % for each image after pre-processing to remove shadow • function mp = min_pixval(X3) • global mp • global rangepix • waitbar(10); • X = double(X3); • % histogram of pixel intensity of original and shadow-removed images • [NX,bX] = HIST(reshape(X,size(X,1)*size(X,2),1),100); • num_thres = 5000; • mp = min(bX(find(NX >= num_thres))); • mp = min(bX(find(NX)));
no. of objects • function numObjects = numberofobjects(X3) • global numObjects • % estimate number of objects in image ... • %waitbar(50); • bw = bwareaopen(im2bw(X3,0.25),30); • bw = imfill(bw,'holes'); • [labeled,numObjects] = bwlabel(bw,8); • % figure; imagesc(labeled); • % numObjects
sum of edge • % this function detect edges of crystal after pre-processing • % using Canny's method and calculate the global sum of the edges • function SoE = sumof_edge(X3) • global SoE • global sumof_edge • %waitbar(30); • Ed = edge(X3,'canny',0.1); % detect edges • SoE = sum(sum(Ed));
sum of local var • % this function calculate a global sum of local variance • % for each image after pre-processing to remove shadow • function SoLV = sumof_localvar(X3) • global sum_locvar • global numObjects • %waitbar(40); • X = double(X3); • % local variance of original and shadow-removed images • M = size(X,1)-1; • N = size(X,2)-1; • for i = 2:M • for j = 2:N • SX(i,j) = std(reshape(X(i-1:i+1,(j-1):(j+1)),9,1)); • end • end • SoLV = sum(sum(SX.^2));
mmread • % function [video, audio] = mmread(filename, frames, time, disableVideo, disableAudio, matlabCommand, trySeeking, useFFGRAB) • function video = mmread(filename) • % [video, audio] = mmread(filename, frames, time, disableVideo, • % disableAudio, matlabCommand, trySeeking, useFFGRAB) • % mmread reads virtually any media file. It now uses AVbin and FFmpeg to • % capture the data, this includes URLs. The code supports all major OSs • % and architectures that Matlab runs on. • function processFrame(data,width,height,frameNr,time) process frame
kalman filtering • function d = Kalmantracking(video) • if ischar(video) • % Load the video from an avi file. • avi = aviread(video); • pixels = double(cat(4,avi(1:2:end).cdata))/255; • clear avi • else • % Compile the pixel data into a single array • pixels = double(cat(4,video{1:2:end}))/255; • clear video • end • % Convert to RGB to GRAY SCALE image. • nFrames = size(pixels,4); • for f = 1:nFrames • pixel(:,:,f) = (rgb2gray(pixels(:,:,:,f))); • end • rows=240; • cols=320; • nrames=f;
kalman filtering • for l = 2:nrames • d(:,:,l)=(abs(pixel(:,:,l)-pixel(:,:,l-1))); • k=d(:,:,l); • bw(:,:,l) = im2bw(k, .2); • bw1=bwlabel(bw(:,:,l)); • imshow(bw(:,:,l)) • hold on • cou=1; • for h=1:rows • for w=1:cols • if(bw(h,w,l)>0.5) • toplen = h; • if (cou == 1) • tpln=toplen; • end • cou=cou+1; • break • end • end • end
kalman filtering • disp(toplen); • coun=1; • for w=1:cols • for h=1:rows • if(bw(h,w,l)>0.5) • leftsi = w; • if (coun == 1) • lftln=leftsi; • coun=coun+1; • end • break • end • end • end • disp(leftsi); • disp(lftln);
kalman filtering • widh=leftsi-lftln; • heig=toplen-tpln; • widt=widh/2; • disp(widt); • heit=heig/2; • with=lftln+widt; • heth=tpln+heit; • wth(l)=with; • hth(l)=heth; • disp(heit); • disp(widh); • disp(heig); • rectangle('Position',[lftln tpln widh heig],'EdgeColor','r'); • disp(with); • disp(heth); • plot(with,heth, 'r*'); • drawnow; • hold off • end;
kalman filtering • widh=leftsi-lftln; • heig=toplen-tpln; • widt=widh/2; • disp(widt); • heit=heig/2; • with=lftln+widt; • heth=tpln+heit; • wth(l)=with; • hth(l)=heth; • disp(heit); • disp(widh); • disp(heig); • rectangle('Position',[lftln tpln widh heig],'EdgeColor','r'); • disp(with); • disp(heth); • plot(with,heth, 'r*'); • drawnow; • hold off • end;
RUN • function video = dis(avi) • clear data • disp('input video'); • avi = aviread('samplevideo.avi'); • video = {avi.cdata}; • for a = 1:length(video) • imagesc(video{a}); • axis image off • drawnow; • end; • disp('output video'); • tracking(video);
Dataflow Diagram Load Video Frame Conversion Video Segmentation Kalman Filter
Modules Description • Video Segmentation : • Segmentation refers to the process of partitioning a video into multiple segments (sets of pixels) (Also known as super pixels). • Segmentation divides an image into its constituent regions or objects. • Segmentation of non trivial images is one of the difficult task in image processing. Still under research. • Segmentation accuracy determines the eventual success or failure of computerized analysis procedure. • Kalman Filter Algorithm : • The Kalman filter is recursive estimator. This means that only the estimated state from the previous time step and the current measurement are needed to compute the estimate for the current state.
Advantages • Good tracking of moving objects under confusions. • Easy to catch the unauthorized person. • Time saving process. • Good performance. • Distinctive techniques.
Applications • Using an Kalman filters and related estimators to track user’s heads and limbs in virtual environments. • The Kalman filter has been used extensively for data fusion in navigation. • Discovery of the Kalman Filter as a Practical Tool for Aerospace and Industry • The Kalman filter---Its recognition and development for aerospace applications,
Conclusion • In this work, a new approach is proposed for tracking multiple moving object in confusing states (i.e. inter-object occlusion and separation) using Kalman filter and CWHI based algorithm. • We exploited Kalman filter with proposed CWHI based algorithm. • Each moving object is assigned an individual Kalman tracker which is assisted by “manager” during the entire tracking process. • The proposed approach has shown good performance when applied on several videos under confusing situations.
Reference • [1] M. Swain and D. Ballard, Color Indexing: In Proceedings of the Third IEEE International Conference on Computer Vision, Japan, 1990, pp. 11–32. • [2] R. E. Kalman, “A new approach to linear filtering and Prediction Problems,” Transactions of the ASME, Journal of Basic Engineering, vol. 82, pp. 34-45, 1960. • [3] P. S. Maybeck, “Stochastic Models Estimation and Control,” Vol. 1, New York: Academic Press, 1979. • [4] N. Funk, “A Study of the Kalman Filter applied to Visual Tracking”, University of Alberta, Project for CMPUT 652, 2003. • [5] N. Nguyen, H. H. Bui, S. Venkatesh, G. West, “Multiple camera coordination in a surveillance system.” ACTA Automatica Sinica, vol. 29, pp. 408-422, 2003. • [6] T. H. Chang, S. Gong., Tracking Multiple People with a Multi-Camera System: IEEE Workshop on Multi-Object Tracking, 2001, pp. 19–26. • [7] H. YU, Y. Wang., F. Kuang, Q. Wan, Multi-moving Targets Detecting and Tracking in a Surveillance System: In Proceeding of the 5th World Congres on Intelligent Control and Automation, China, June, 2004. • [8] S. A. Vigus, D. R. Bull, C. N. Canagarajah, Video object tracking using region split and merge and a Kalman filter tracking algorithm: In proceedings of ICIP, 2001, pp. 650-653. • [9] A. Czyzewski, P. Dalka, Examining Kalman Filters Applied to Tracking Objects in Motion: 9th International Workshop on Image Analysis for Multimedia Interactive Services, 2008, pp. 175-178.
Reference • [10] R. Collins, Y. Liu, and M. Leordeanu. “Online selection of discriminative tracking features,” IEEE Transactions on Pattern Analysisand Machine Intelligence, vol. 27, pp. 1631–1643, 2005. • [11] T. Yang, S. Z. Li, Q. Pan, and J. Li. Real-time multiple objects tracking with occlusion handling in dynamic scenes: In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, pp. 970– 975. • [12] F. Liu, Q. Liu, H. Lu, Robust Color-Based Tracking: 3rd International Conference on Image and Graphics, 2004, pp. 132–135. • [13] X. Limin, Object tracking using color-based Kalman particle filters: IEEE International Conference on Signal Processing, 2004, pp. 679–682. • [14] P. Pérez, C. Hue, J. Vermaak, and M. Gangnet, Color-Based Probabilistic Tracking: 7th European Conf. on Computer Vision, 2002,pp. 661–674. • [15] W. Jia, H. Zhang, X. He, and Q. Wu. Symmetric colour ratio gradients in spiral architecture: Proceedings of the 18th International Conference on Pattern Recognition, 2006. • [16] G. Welch and G. Bishop, “An Introduction to the Kalman Filter”,University of North Carolina at Chapel Hill, Technical Report 95-041, 1995.