310 likes | 426 Views
Járművillamosság-elektronika. Alapfogalmak Villamos és mágneses Átmeneti jelenségek Félvezetők Fajtáik 2014.09.04. Tematika. 1. hét 09.04. Regisztráció, tantárgy kialakítás, követelmények Alapfogalmak (villamos, mágneses), Félvezető eszközök alkalmazása gépjárművekben
E N D
Járművillamosság-elektronika Alapfogalmak Villamos és mágneses Átmeneti jelenségek Félvezetők Fajtáik 2014.09.04.
Tematika 1. hét 09.04. Regisztráció, tantárgy kialakítás, követelmények Alapfogalmak (villamos, mágneses), Félvezető eszközök alkalmazása gépjárművekben 2. hét 09.11. Gépjárművek villamos rendszere (villamos hálózat, 42 Voltos rendszer), Áramellátó rendszer (akkumulátorok, jellemzőik, vizsgálatuk) 3. hét 09.18. Akadémiai nap (oktatási szünet) 4. hét 09.25. Generátorok szerkezete, működése, Feszültségszabályozás 5-6.hét 09.29-10.10. 1. laborgyakorlat: Áramellátó rendszerek a gyakorlatban* - csoportosítás - tulajdonságaik - vizsgálatuk
Tematika 7. hét 10.16. Indító motorok, Villamos motorok 8. hét 10.23. Munkaszüneti nap, nemzeti ünnep 9. hét 10.30. Gyújtásrendszerek ismertetése, műszerek, szenzorok 10. hét 11.06. Korszerű járművilágítások, Komfortelektronika 11-12. hét 11.10-21.2. laborgyakorlat: Indítómotorok és mérőműszerek a gyakorlatban* - csoportosítás - tulajdonságaik - vizsgálatuk 13. hét 11.27. Zárthelyi 14. hét 12.04. Összefoglalás, Zárthelyi dolgozat pótlása, javítása F előadó, csütörtök, 1-2. óra (8.00-9.40)
Definíciók • Villamos áram: töltések rendezett irányú áramlása Iránya: pozitívból negatívba mutat (technikai áramirány) negatívból pozitívba (elektronok valós irányú mozgása - fizikai áramirány) Okozhatja: dörzs elektromosság, hő energia, galván- és indukciós elektromosság Járművillamosságtan-elektronika I.
Villamos áram hatásai: • Hőhatás (ablakfűtés) • Elektromágneses (vezető körül mágn. tér) • Vegyi (galván elemek) • Ívhatás (gyújtógyertya) • Élettani (áramütés!!!!!) • Fény (izzólámpák) Járművillamosságtan-elektronika I.
Áramerősség • Áramerősség: I (A) I=Q/t (vezető keresztmetszetén egységnyi idő alatt átáramló töltésmennyiség) 1 A az áram erőssége, ha két párhuzamos, egyenes, végtelen hosszúságú, elhanyagolhatóan kicsiny kör keresztmetszetű és vákuumban, egymástól 1 m távolságban lévő vezető között méterenként 2x10− 7N erőt hoz létre. Járművillamosságtan-elektronika I.
Feszültség • Feszültség:U (V)U=W/Q • az elektromos töltésnek az A pontból a B pontba történő mozgatása során végzett munka (W) és az elektromosan töltött test töltésének (Q) a hányadosával definiált fizikai mennyiség. Egysége: J/C Elektromos potenciál: U(P) nevezzük A tér bármely pontjának (P), egy kitüntetett ponthoz (O) viszonyított feszültségét Járművillamosságtan-elektronika I.
Ellenállás • Ellenállás: R (Ohm) R=U/I • Ohm-törvény: a vezetőn átfolyó áram erőssége egyenesen arányos a vezető két vége közti feszültséggel • Fajlagos ellenállás: R=l/A • Vezetőképesség: G (Siemens)=1/R Járművillamosságtan-elektronika I.
Villamos munka: W=QU=ItU (J) • Villamos teljesítmény: P (Watt)=W/t=UI Kapacitás: C(F) C=Q/U (töltés befogadó képesség) a kondenzátorra vitt töltés (Q) és a kondenzátor fegyverzetei közötti feszültség (U) hányadosa. Egysége: C/V, röviden Farad. Járművillamosságtan-elektronika I.
Mágneses indukció: B (T) B=M/NIA • Mágneses fluxus: (weber)=BA • adott felületen áthaladó • indukcióvonalak száma • Mágneses térerő: H (A/m) • Magnetometer Járművillamosságtan-elektronika I.
B=μH=μoμrH, μo=4π10-7 Tm/A • μ:permeabilitás • μr<<1 diamágneses anyag (fa, ezüst) • μr>1 paramágneses anyag (Al, Pt, Mg, Ti, Cr, Mn, Mo, W ) • μr>>1 ferromágneses anyag (vas, nikkel, kobalt ) Járművillamosságtan-elektronika I.
Mágneses Ohm törvény • Φ=BA=μHA=μNiA/l=μAθ/l, θ • Φ=θ/RM • Θ: mágneses gerjesztés=Ni • RM: mágneses ellenállás=l/μA Járművillamosságtan-elektronika I.
Egyenes tekercsre • Egyenes tekercs (szolenoid) mágneses tere: az indukcióvonalak a tekercs belsejében párhuzamos egyenesek - azaz itt homogén a mező. • B=μiN/l Járművillamosságtan-elektronika I.
A hiszterézisgörbe által bezárt terület arányos a vasanyag átmágnesezéséhez szükséges energiával. A váltakozó irányú gerjesztéssel elvesző energia, a hiszterézisveszteség, hővé alakul át. Járművillamosságtan-elektronika I.
Áramjárta vezetőre ható erő: ha áram folyik egy mágneses mezőbe helyezett vezetőben, és az nem párhuzamos az indukcióvonalakkal, akkor a mágneses mező erőt fejt ki a vezetőre • F=liB, másképpen F=QvB • Jobbkéz szabály (i: hüvelyk- • ujj, B: mutatóujj, F: középsőujj) Járművillamosságtan-elektronika I.
Időben változó mágneses mező • Mozgási indukció: ha egy vezető az indukcióvonalakat metszve mozog mágneses mezőben, akkor a végei közt feszültség (ha pedig a vezető egy zárt kör, akkor egyúttal elektromos áram) jön létre. Ezt a feszültséget illetve áramot indukált feszültségnek és áramnak nevezzük. • Faraday törvény: Járművillamosságtan-elektronika I.
Lenz-szabály: az indukált áram iránya mindig olyan, hogy annak mágneses mezeje akadályozza az indukáló folyamatot • Önindukciós együttható: induktivitás (tekercsre) Járművillamosságtan-elektronika I.
Hall effektus • UH=RHBI/h Gyújtásvezérlés Indukció, áram és teljesítmény mérés, érintés-mentes Járművillamosságtan-elektronika I.
Tranziens jelenségek • Be és kikapcsoláskor • T=L/R és WL=Li2/2 • Imax=U/R Járművillamosságtan-elektronika I.
Tekercset kondenzátorral helyettesítve • WC=CU2/2 • Üres kondi rövidzárnak tekinthető • Áramot korlátozni kell • T=RC • Ki és bekapcsolásnál • Nagy ugrások lehetnek Járművillamosságtan-elektronika I.
Félvezetők • 4 vegyértékű elemek (Si, Ge) • Szén is az, egykristálya a gyémánt • Dotálással „szennyezzük” • Öt vegyértékűvel: As, Sb, P n típusú • Három vegyértékűvel: In, Ga, p típusú Járművillamosságtan-elektronika I.
Dióda • Villamos visszacsapó szelep • P-n átmenetben a szabad elektronok a p rétegbe diffundálnak, míg a lyukak az n réteget pozitív töltésűvé teszik • Záró irányú feszültséget rákapcsolva a potenciálgát nő • Nyitó irányban (p-re pozitív, n-re negatív) potenciálgát csökken Járművillamosságtan-elektronika I.
Fajtáik • Egyenirányító diódák (Graetz híd) • Jel (kapcsoló) diódák • Teljesítmény diódák • Feszültség stabilizálás (Zéner) Járművillamosságtan-elektronika I.
Graetz-kapcsolás Járművillamosságtan-elektronika I.
Tranzisztorok • Három réteg, két átmenet • N-p-n ill. p-n-p • Három kivezetés (bázis, emitter, kollektor) • Bipoláris, térvezérelt • Erősítése β=50-200=IE/IB • Erősítés növelhető (Darlington kapcsolás) • Járműben általában kapcsoló üzemben használjuk (gyors, nagy záró irányú és kicsi nyitó irányú ellenállás) Járművillamosságtan-elektronika I.
Jelölése: Járművillamosságtan-elektronika I.
Tirisztorok • Négy réteg n-p-n-p • Három kivezetés (p1, n2 és p2,mint gate) • P2-re nyitó fesz. • Tirisztor begyújt • Kikapcsolni IA csökken- • tésével lehet • Vezérlő áram kicsi Járművillamosságtan-elektronika I.
Karakterisztikája Járművillamosságtan-elektronika I.
Triac • Két tirisztor közös gate-tel • Mindkét irányban szabályozható Járművillamosságtan-elektronika I.