1 / 26

4.4: Analyze Conditional Statements

4.4: Analyze Conditional Statements. Vocabulary: a_______________________ is a logical statement that has two parts, a hypothesis and a conclusion. When it is written in an “ if-then form ”, the “if” part is the _______________ and the “then” part is the _____________

Download Presentation

4.4: Analyze Conditional Statements

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 4.4: • Analyze Conditional Statements

  2. Vocabulary: • a_______________________ is a logical statement that has two parts, a hypothesis and a conclusion. When it is written in an “if-then form”, the “if” part is the _______________ and the “then” part is the _____________ • Example: circle the whether or not the underline phrase is the hypothesis or conclusion. • If I water my flowers, then they will grow • (hypothesis/conclusion) (hypothesis/conclusion) • You try: • If I study for my test, then I will do better on my test. • (hypothesis/conclusion) (hypothesis/conclusion) • __________________:when you switch the hypothesis and the conclusion • __________________: when you negate (say opposite of) the hypothesis and conclusion. • _________________: when you switch the hypothesis and conclusion AND negate them.

  3. Rewrite the statement in if-then format. 1. All sharks have a boneless skeleton. 2. When n = 6, n² = 36.

  4. If it is a shark, then it has a boneless skeleton . • If n = 6, then n² = 36.

  5. Write If-then form, converse, inverse, and contrapositive, and determine if each is true or false. Basketball players are athletes. If-then: Converse: Inverse: Contrapositive:

  6. If-then: If they are basketball players, then they are athletes. • Converse: If they are athletes, then they are basketball players. • Inverse: If they are NOT basketball players, then they are NOT athletes. • Contrapositive: If they are NOT athletes, then they are NOT basketball players. True or False?

  7. Vocabulary: • If 2 lines intersect to form right angles, they are _______________ lines • When a statement and its converse are BOTH true, you can write them as a __________________________ statement. This statement contains “_____________”

  8. Write a BICONDITIONAL • If a polygon is equilateral, then all of its sides are congruent. • Converse: • Biconditional:

  9. Converse: If all of the sides are congruent, then it is an equilateral polygon • BICONDITIONAL: A polygon is equilateral if and only if all of its sides are congruent.

  10. 4.4: Apply Deductive Reasoning (note: different than logic in 4.2: Inductive Reasoning) • Vocabulary: • ____________________ reasoning uses facts, definitions, accepted properties, and logic to form logical argument. • ___________________________ if the hypothesis is true, then the conclusion is true • If p, then q • P, therefore q • ___________________________ • If p, then q • If q, then r • P, therefore r

  11. Law of Detachment: • Example: • If you order desert, then you will get ice cream • Sarah ordered desert • Sarah got ice cream

  12. Example: • If you run every day, then you will be in good shape. • Ms. Towner runs every day • Ms. Towner is in good shape. 

  13. Example: • If is angle A is acute, then angle A is less than 90 degrees. • Angle B is acute. • Angle B is less than 90 degrees.

  14. You Try: • If an angle measures more than 90 degrees, then it is not acute. • The measure of angle ABC is 120 degrees.

  15. Angle ABC is not acute.

  16. You Try: • If two lines will never intersect, then they are parallel • Lines AB and CD never intersect.

  17. Lines AB and CD are parallel.

  18. Law of Syllogism: • Example: • If you wear school colors, then you have school spirit • If you have school spirit, then your team feels great. • If you wear school colors, then your team feels great

  19. Example: • If you study hard, then you will do well in your classes. • If you do well in your classes, then you will graduate. • If you study hard, then you will graduate.

  20. Example: • If angle 2 is acute, then angle 3 is obtuse. • If angle 3 is obtuse, then angle 4 is acute. • If angle 2 is acute, then angle 4 is acute.

  21. You Try: • If a=bd, then c=fd • If c=fd, then d=oh

  22. If a = bd, then d = oh.

  23. You Try: • If jlt, then pql • If pql, then jtw

  24. If jlt, then jtw.

  25. Use Inductive and deductive reasoning: • Example: Make a conclusion about the sum of 2 even integers. • STEP 1: Inductive Reasoning • Pick a few samples: -2+4=2 ; 8+6=14 • Conjecture: even# + even # = even# • STEP 2: Deductive Reasoning • Use logic to prove your conjecture (first write a ‘let’ statement • Letn and m equal any integer

  26. PROOF 2n is even; 2m is even 2n+2m is the sum of even numbers 2n+2m= 2(n+m) 2(n+m) is even 2(n+m) was the sum of 2n+2m even #+even# = even # REASON b/c multiplying by 2 makes it an even number Addition factoring b/c multiplied by 2 makes an even number 3rd bullet 2n+2m=2(n+m) b/c 2n is even, 2m is even, 2(n+m) is even, and 2n+2m=2(n+m)

More Related