1 / 45

Summary from lecture I

Summary from lecture I. Meson line shape modifications seen in p+A/ +A reactions: E325/KEK : downward  mass shift (~ 9%) E325/KEK: downward  mass shift (~3%) and broadening CBTAPS : downward  mass shift (~14%) and 10-fold! broadening. Strong momentum dependece m(p). No sensitivity to 

orsin
Download Presentation

Summary from lecture I

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Summary from lecture I • Meson line shape modifications seen in p+A/+A reactions: • E325/KEK : downward  mass shift (~ 9%) • E325/KEK: downward  mass shift (~3%) and broadening • CBTAPS : downward  mass shift (~14%) and 10-fold! broadening. Strong momentum dependece m(p). No sensitivity to  • .. but • G7/CLAS: no mass shift of  (~45% broadening)  contradiction to E325/KEK but CB problem in E325? • G7/CLAS: no effect on  mass shift ... but CLAS acceptance is not sensitive to CBTAPS no contradiction to CPTABS • New HADES experiment @ GSI : will be sensitive to both / 

  2. Dielectrons from HI: SIS (HADES) and Bevelac (DLS) P. Salabura Jagiellonian University/GSI

  3. First chance collisions Freeze-out Dense matter SIS (BEVALAC) energy regime: 1-2 AGeV • Final state (Freeze-out) in heavy ion collisions • approximately 10-15 % pions, baryon resonances ((1232)) dominated • up to 200 charged particles (Au+Au) • Enhancement of baryon density in "fireball" • Comparable to \ life times : V=1.3\23 fm/c Au + Au @ 1 AGeV UrQMD: J. Phys. G: Nucl. Part. Phys. 25 (1999) 1859– T60=80MeV r/r0 15 fm/c

  4. Meson production at SIS/Bevelac energies • Production of vector mesons close to the threshold :SNN< STHR=2MN + m (Ekinthresh = 1.92 GeV) • co-operative process :NN N, N NN/ or  N, N N*()  N/ • production confined to high density phase • Low production rates: One vector meson decaying into lepton pair per 10 Million reactions ! • Investigation of NN and N collisions is prerequisite for HI ! W. Cassing, E.L. Bratkovskaya / Phys.Rep. 308 (1999) 65Ð233 Yield (arb. units) mT=( m2 + p2 T)1/2

  5. e+e- : example thermal source • A(m)- Breit-Wigner resonace formula •  (m) Mass dependent decay width • for e+e- reads • fB(M,T)Boltzmann thermal factor • fB(M,T) ~ p E exp(-E/T) →e+e- from C+C @ 2AGeV + thermal source • no cut-off at M=2m

  6. e+ e- Line shape modification of  :intermediate resonaces D. Schumacher , S. Vogel et.al (UrQMD) •  produced through Baryonic resonance • N*(1520), N*(1720) and • (1700), (1905) involved N  N*()

  7. DLS puzzle: Data: R.J. Porter et al.: PRL 79(97)1229 Model: E.L. Bratkovskaya et al.: NP A634(98)168,BUU, vacuum spectral function DLS puzzle: Strong dilepton enhancement over hadronic cocktails comparable to top SPS energies (CERES)! • Not explained even by in-medium mass shifts and broadening • Shape of enhancement consistent with e+e- but cross section to low (TAPS)

  8. TAPS TAPS – Two Arms Photon Spectrometer Electromagnetic calorimeter : m =(2E1E2(1-cos(12))1/2 C+C @ 1 AGeV • small acceptance (mid rapidity) • Acc~10-3

  9.  and  from TAPS Cross sections measured and extrapolated to full solid assuming isotropic thermal source at rest in NN CM frame Converted into pair yields:

  10. The DiLepton Spectrometer at LBL • 1988-1993 at Bevalac • 2 Arm-Spectrometer • Minimum opening angle: 40° • Each arm: 40° in Φ, 7.5° in Θ • Trigger on electron-pairs • Mass resolution • 30-40% systematical error • pp/pd, Ca+Ca • 1993 C+C 1.04 AGeV, • Mid-Rapidity: 0.69 • Acceptance • Statistics

  11. Side View START HADES detector • Acceptance: • Full azimuth, polar angles 18o - 85o • Pair acceptance  0.35 • Particle identification: • RICH: CsI solid photo cathode, C4F10 radiator, • TOF: 384 scintillator rods • TOFino: 24 scintillator paddles  MUL limitation, high granularity RPC from 2008 • Pre-Shower: 18 pad chambers & lead converters) • 2' Level single leg electron trigger (Me>=1) • e+e->=92%, evt. reduction : 20(pp) -3(ArKCl) • Momentum measurement • Magnet: B = 0.36 Tm + • MDC: 24 midi drift chambers, single-cell resolution  140 mm, 2005-6: set-up completed (MDC IV) FW

  12. mid-rapidity mid-rapidity Phase space coverage: HADES vs. DLS Red dashed lines: constant pair momenta in steps of 100 MeV/c • Thermal π0 and ηevents: HADES and DLS acceptance • HADES acceptance larger but for low masses (M<0.14 GeV/c2) part of phase space covered by DLS not covered by HADES !

  13. Hadron Id • momentum vs velocity (β) measurement: 180 <<450 TOFINO 450 <<850 TOF ~450 ps ~120 ps

  14. g g e+ e+ Q~ 2.20 p0 Q~ 15.20 e- Conversion e- Dalitz decay 20% electrons: pi0 Dalitz 70% : electrons conv. • hadron blind • 3 ~ ghad < gt < glep • C4F10 : gt = 18.3 • pp> 3 GeV/c Electron identification-RICH One ring: Two rings (if Q>40) • needs high res. MDC!

  15. DATA velocity vs. momentum e+ e- Electron Id • Spatial correlations • RICH rings ↔ MDC tracks • MDC tracks ↔ TOF and PreShower hits • PID : e+, e- • β vs momentum correlation • PreShower condition C + C @ 2AGeV • hadron admixture < 3% at 1000 MeV/c

  16. Relative suppression C1 C2 C3 Pair Analysis C + C @ 2 AGeV Signal/ Background rejection <9o TOF/Shower <90 MDC I-II RICH C1 C2 C3 close conversion candidate Shared detector hit Close pair C1 – the only pair cut C2 – selection of "clean" tracks C3- conversion rejection Signal= Ne+e- - CB CB – Combinatorial Background

  17. C + C @ 2 AGeV • Spectra before efficiency correctionnormalizated to ½(+ + -) yield  (Mee) ~9 % @ Mee~0.8 GeV/c2 2002 set-up with 2 inner MDC only ~ 23000 signal pairs for full Mee range ~ 3000 signal pairs for full Mee > 150 MeV/c2

  18. CB Reconstruction Mee > 150MeV/c2 Combinatorial background: M < 150 MeV/c2 - sLS sLs = 2 (checked with MC for HADES ) M > 150 MeV/c2 - mixed Opposite Sign (mOS) CC 2AGeV • Normalization done between 150-550 MeV/c2 Mee • sLS and mOS background show same behavior for Mee > 150 MeV/c2 • For Mee < 150 MeV/c2 deviations due to correlated background eeX Mee > 150MeV/c2

  19. Experiment Physics HADES dN/dM RawData Analysis Efficiency Correction PairSpectra Comparison to Physics Generators Event Generator time consuming but done to cross-check eff.corrections and acc. filters AcceptanceFilter Acc± (p,, Φ) final comparison: only in HADES acceptance comparison incl. efficiency factors

  20. Acceptance and Efficiency matrices • pair production and decay is described by 6 dof (3 production and 3 decay) • p (0 – 2 GeV/c), • Φ (0o – 60o), • Θ (0o – 90o) and similarly CC @ 2 AGeV

  21. Cocktail A: 0 + η + ω • Cocktail B: Cocktail A + Δ(Ne+e-) + ρ • short lived component 18 % 21 % C+C @ 2 AGeV A. Agakichiev Phys.Rev. Lett 98(2007) 052302 • Coctail A (long lived mesonic components) • 0 thermal source, anisotropic angular distribution according to measured +- •  isotropic •  mT scaling systematic errors: 15 % - efficiency correction 10 % - combinatorial background 11 % - 0 normalization

  22. Cocktail B: Cocktail A + Δ + ρ  Contribution from short lived resonances (ρ, Δ, N*) • Reduced discrepancy for Mee>0.15 GeV/c2 • Cocktail B underestimates data C+C @ 1 AGeV • Good agreement in π0 region • Underestimates the data for Mee > 0.15 GeV/c2 Cocktail A:0 + η + ω = “long-lived” components only PRELIMINARY  Large excess yield

  23. η ω C+C @ 2AGeV pT , Y distributions • Mee < 150 MeV/c2 :Data well described, • 150 < Mee < 550 MeV/c2 :Underestimation over whole p range (factor 2). • Mee > 550 MeV/c2 : Underestimation for high p

  24. Pt Spectra @ 1 AGeV PRELIMINARY • Good agreement in π0 region • Underestimation for Mee> 0.15 GeV/c2 • Excess over Cocktail A (0+ η + ω) enhancement at low Pt PRELIMINARY No Off-shell, multi-step processes  Transport models

  25. RQMD Tübingen C.Fuchs, D. Cozma • UrQMD Frankfurt M. Bleicher, D. Schumacher • HSD Gießen (v2.5) E. Bratkovskaya, W. Cassing vacuum results Comparison to transport models for CC @ 2AGeV (status 2006) • Large variation of yield in models due to uncertainties in Baryon decays  must be fixed by data

  26. PRELIMINARY C + C 2 AGeV Phys. Rev. Lett. 98, 052302 (2007) Yield above  for C+C @ 2 and 1 AGeV Yield above : F(1.0) = 7.06 ± 0.6(stat) ± 1.58(sys) F(2.0) = 2.07 ± 0.21(stat) ± 0.38(sys)

  27. DLS η Yexc F(1.04) = 6.5 ± 0.5(stat) ± 2.1(sys) TAPS Yexc(2.0)/Yexc(1.04) = 2.5 ± .5(stat) ± 1.5(sys) Excitation function of Pair Excess (Yexc) DLS excess scales like pion production !

  28. Fit: Mee < 0.15 GeV/c² 0.15 GeV/c² ≤ Mee≤ 0.55 GeV/c² PRELIMINARY Pt [GeV/c] Pt [GeV/c] HADES vs DLS : direct comparison for CC at 1 AGeV

  29. PRELIMINARY PRELIMINARY  HADES and DLS Data agree J. Carroll – presentation International Workshop on Soft Dilepton ProductionAugust 20-22,1997, LBNL DLS Data: R.J. Porter et al.: PRL 79(97)1229 Direct Comparison: HADES vs DLS • HADES Data incl. extrapolation in DLS acceptance

  30. HADES and DLS agree with each other: Do we have now HADES/DLS puzzle for the next 10 years? • Hopefully not. • Do we understand elementary sources contributing to dielectron cocktail at SIS/Bevelac energies? • Radiation from baryonic matter ? • NNNNe+e- bremsstrahlung • NNNN*() NNe+e- bramsstrahlung with resonance excitation i.e  (1232)Ne+e- Delta Dalitz decay

  31. dp and pp @ 1.25 GeV Strategy: study of e+e- sources in pp and pn at s<sthres (Ekin =1.25 GeV) for  production Only 0,  and bremsstrahlung contribute: • Measure pp+pppe+e- (fix +) - assuming brems (pp) is small • Measure pn e+e-X with dp reactions – determine brems (pn)

  32.  () production in pp, pn @ 1.25 GeV Resonance model and isospin symmetry: •  dominant at 1.25 GeV 2/3+p0 1/30p- pp  p+ 6.0 mb pn n+ + pn  p0 =12. mb (assuming isospin symmetry) ++ =3 + 2/3+p0 2/30n0 2/3+,0 = p(n)0 S. Teis et al., Z. Phys. A 356 (1997) 421-435

  33. baryon resonances 1‘ 1 e+ 2‘ 2 1‘ 1 e- 2‘ 2 NN - bremstrahlung • Strong + electromagnetic process Kaptari, Kampfer Nucl. Phys. A 764 (2006) 338 Shyam & Mosel (2003) One Boson Exchange Model + = +

  34. L.P. Kaptari, B. Kämpfer Nucl. Phys. A 764 (2006) 338 x2 total x4 NN- bremsstrahlung-dielectron yield • Large isospin (pn = pp ) effects

  35. pp/dp from DLS Data: DLS: W.Wilson Phys.Rev.C(1998) • Problems in description • Bremsstrahlung? •  contribution ? • No 0 visible in data ! cross-check with "known" physics" missing E. Bratkovskaya et al. nucl-th\0008037 (2000) 100 100 C. Fuchs et al. Phys. Rev. C68 014904(2003) 10-1 10-1 eVDM

  36. 10 S/B 1 pp/dp @ 1.25 GeV HADES preliminary (run 2006) • ~50% analyzed • 17008 signal pairs 0.5 1.0 Mee

  37. pp @ 1.25: comparison to simple model preliminary not eff. corrected • cocktail filtered with HADES acceptance and rec. efficiency • normalized to 0 yield • only 2 sources: • 0 e+e-  • +pe+e- decay (BR=4.4*10-5) • + yield fixed to 0 with isospin relation: N(+)=3/2 N(0) • factor ~2 missing yield for • M>0.15 GeV/c2

  38. pne+e- X with d+p @ 1.25 AGeV • forward p spectator tagging in Forward Wall  selection of pn reactions(10% contribution from pp, only) p_c p_spec pc d d+pp_c n  p_spec d+pp_c n 0 p_spec p_c p_c p_c p_spect ns p_spec p_spec

  39. 10 S/B 1 pn @ 1.25 AGeV "On-line spectrum" not efficiency corrected • (MUL=>2 && FW "p spectator") tag on np -> e+e- X reactions • ~50% analyzed "online" • 37800 signal pairs +- > 90 0.5 1.0 Mee

  40. pn @ 1.25 AGeV cocktail not efficiency corrected normalized to same 0 yield "online spectrum" p + n @ 1.25 AGeV e+e- >90 • cocktail filtered with HADES acceptance and rec. efficiency • cocktail with  and  only: • (same as for pp case) • factor 4-5 missing yield for M>150 MeV/c2 (~3 larger than for pp)! • larger at higher masses • clear evidence for additional sources • (bremsstrahlung !? pn>pp)

  41. factor ~3-4 p+n vs p+p vs C+C : scaling to VERY PRELIMINARY ! p+p vs p+n • p+n above p+p by a factor of 3 • stronger effect at higher masses  Contribution from bremsstrahlung?  pn Bremsstrahlung > pp Bremsstrahlung p+n vs C+C • fair agreement over whole range  NN – bremsstrahlung !?  Puzzle explained by bremsstrahlung?

  42. HADES – HSD vacuum (version'07) Inv. mass • Good agreement • Undershoot at ~ 0.4 GeV/c2 ? Pt Distributions • Mee < 0.15 GeV/c² - 0dominated • Mee > 0.15 GeV/c²: • Bremsstrahlung important at low pt

  43. Summary: • Low mass enhancement ("DLS puzzle") : a) HADES+ DLS fully consistent: b) dielectron enhancement scales with beam energy as pion production b) preliminary combined pp and pn data @1.25 GeV show enhancement (pn>pp) above "standard cocktail" : 0 e+e- , Ne+e- • Ne+e- BR? • NN bremstrahlung ? • e+e- (for pn – Fermi momentum) All components can be fixed from new HADES data Improved cocktail should be then compared to HI data... and finaly fix elementary dielectron cocktail • Vector meson production a) / region measured in pp @ 3.5 GeV with HADES b) in –medium modifications ? Ar+KCl measured in 2005 and analysis is almost complete c) p+Nb(Be) to hunt for / modification in nucleus – run scheduled for beginning of next year

  44. Quo Vadis HADES p+p 1,25 GeV EXP S201 p,d+p 1,25/3,5 AGeV EXP S201 p+A upgrade Ni+Ni p+N,A Au+Au 8 AGeV SIS Currently discussed in a committee SIS SIS

  45. back-up slides

More Related