190 likes | 418 Views
Calculation of radiation produced by dark current in the Cornell ERL. Lisa Nash, University of North Carolina at Chapel Hill Advisor: Val Kostroun. Motivation. Radiation fields from dark current in unknown Measurements will be taken later this month
E N D
Calculation of radiation produced by dark current in the Cornell ERL Lisa Nash, University of North Carolina at Chapel Hill Advisor: Val Kostroun
Motivation • Radiation fields from dark current in unknown • Measurements will be taken later this month • Goal of project was to simulate possible results
Motivation Cont. : JLab measurements • Cryomodules at JLab are similar to those for Cornell ERL • Cavities are 20 MV/m at Jlab, 16 MV/m at Cornell ERL • Neutron and gamma spectra will be measured at entrance and exit of a cryomodule
Radiation generated by electrons • Electrons in ERL accelerated to energies as high as 5 GeV • Bremsstrahlung radiation • Electromagnetic shower created can cause emission of neutrons
Monte-Carlo • Probability distributions randomly sampled to determine the outcome of each step • Reliability of models is important e+ e- g
Monte-Carlo Method and MCNP • 1930s :Fermi used method to solve problems in neutron physics, but never published results. • WWII: Statistical sampling to solve problems discussed at LANL by several scientists. Method named for Monte-Carlo casino. • 1963: First general-purpose particle transport code developed at LANL • 1977: MCNP developed as Monte-Carlo Neutron Photon (now Monte-Carlo N-Particle, MCNPX=Monte-Carlo N-Particle eXtension)
Using MCNPX c Created on: Friday, July 15, 2011 at 15:19 1 1 -8.57 -9 3 13 -15 2 1 -8.57 -10 5 14 -16 3 1 -8.57 -6 1 15 11 4 1 -8.57 -6 1 -11 16 5 1 -8.57 -2 7 -13 -18 6 1 -8.57 -4 8 -14 -18 7 0 -3 -5 -13 -14… 1 tz 0 0 0 6.731 4.135 3.557 2 tz 0 0 5.765 5.712 1.235 2.114 3 kz 5.72789 19.713405481652 -1 4 tz 0 0 -5.765 5.712 1.235 2.114 5 kz -5.72789 19.713405481652 1 6 tz 0 0 0 6.731 4.435 3.857… mode n p e m1 41093.24c 1 $MAT1 c --Physics phys:p 330 0 0 1 1 phys:e 330 0 0 0 0 1 1 1 1 phys:n 330 2j 0 -1 0 0 phys:h 330 j 0…
Simple niobium runs • 0.3 cm thick piece of niobium simulated for varying angles and energies • Energy deposition by electrons and gamma/electron currents tallied from surfaces Angles and energies varied θ e- Electrons incident
MCNPX tallies Number of gammas per source particle exiting opposite face of niobium at 40 degrees, 40 MeV
Spatial distribution of radiation Gamma fluence at 80 degrees Gamma fluence at 0 degrees
Secondary electrons Fraction of electrons scattered backwards (per source electron) Average energy of electrons in MeV
Energy Deposited Energy deposited per incident particle in niobium
Cavity and CryomoduleGeometry • MCNPX visualization of single 7-cell cavity • Needed geometry components (tori and cones) solved for in Mathematica • View down the MCNPX cryomodule
Cryomodule approximation Coaxial cylinders of cryomodule materials Stainless Steel Aluminum Niobium Linear source of electrons incident on niobium cylinder e- Titanium
Gammas through steel end-cap Number of gammas through end-cap per square centimeter (per source particle) Average energy of gamma exiting the cryomodule through an end-cap
Summary • Varying degrees of detail have been added to problem geometry and are ready for simulation with Christie’s data • Val is preparing for measurement at the end of August
Acknowledgements • I would like to thank Val for teaching me about nuclear physics and simulations in MCNPX and everyone involved in setting up the REU program • This work was supported by the NFS