200 likes | 324 Views
Calculations of i nterplay between anizotropy and coupling energy in magnetic multilayers systems. M.Czapkiewicz Department of Electronics, AGH University of Science and Technology, POLAND. Schedule one-domain S-W model
E N D
Calculations of interplay between anizotropy and coupling energy in magneticmultilayerssystems M.Czapkiewicz Department of Electronics, AGH University of Science and Technology, POLAND
Schedule • one-domain S-W model • MAGEN2 - program for simulation of magnetization process of multilayers systems • examples of calculations and experiments • PSV • SV • Biased FP • TMR SV • SV AAF • To-do tasks
Definitions • Magnetization: monolayer bilayer • AMR (ML) • GMR (BL) Task to compute: how depend on H ?
Stoner-Wohlfarth model • Surface energy density (example for 2 layers with planar UA anisotropy): where • Numerical gradient seeking of local minimum for each H field
Program interface • Input: • Saturation magnetization • Effective anisotropy energy • Anisotropy axis definition • Interlayer coupling energy • Field range • Output: • angles for each layer • Total magnetization M(H) • Total energy • To do: GMR, TMR…
example – PSV-type bilayer Measured example: Py2.8nm/Co2.1nm/Cu2nm/Co3nm Fit for: Ku1/Ku2 = 31 GMR only in non-parallel state
Influence of ferromagnetic coupling on PSV switching AF-state only if JFF weak
2. example – SV with AF layer Measured sample: Co4.4nm/Cu2.3nm/Co4.4nm/FeMn10nm exchange coupling energy JFP-FF= 7.910-6 J/m2 interface coupling energy JEB = 9410-6 J/m2 anisotropy energy KFF= 580 J/m3, effective AF anizotropy KAF= 80·103 J/m3
Influence of FP-FF ferromagnetic coupling on GMR of SV structure • Analytical simulation for
3. Influence of effective anisotropy of AF layer on SV biased field M.Tsunoda model: ordering of AF layer grains (during deposition for top-type SV or during field cooling for bottom-type SV) lead to increase total eff. anisotropy Energy density model of AF-FP system:
Example of AF-FP system (after f.c.) Si/Ta5nm/Cu10nm/Ta5nm/NiFe2nm/Cu5nm/MnIr10nm/CoFe2,5nm annealed: 200oC/1h, field cooling 1kOe CoFe – 25 Å MnIr – 100Å fit for: JEB= 20010-6 J/m2 , KAF= 40000 J/m3. Courtesy of Prof. C.G. Kim Chungnam University RECAMM, Taejon, Korea
4. Influence of KAF to JEB ratio of FF/S/FF/AF structure on M(H) switching
4. MTJ example Buffer:Si/Ta5nm/Cu10nm/Ta5nm/Ni80Fe202nm/Cu5nm AF layer: Ir25Mn75 (10nm), FP layer Co70Fe30 (2.5nm), isolator spacer and FF layer AlOx(1.5nm)/Co70Fe30(2.5nm)/Ni80Fe20 (10nm) Fit for: anizotropy energy of FF layer K1= 210 J/m3, m0 Ms1 = 0.85 T, exchange coupling energy FF-FP J12= 1.0410-6 J/m2(FF). effective anizotropy energy of FP layer K2= 95000 J/m3, m0 Ms2 = 1.5 T, interface coupling energy FP-AF JEB=47010-6 J/m2. effective anizotropy energy of AF layer KAF= 50000 J/m3
5. SV with Artificial AF – before annealing AFF-SV: AF/FP1/S1/FP2/S2/FF Example: Si(111)/Ta10.5nm/PtMn19.8nm/ CoFe2nm/Ru0.77nm/CoFe2nm/ Cu2.2nm/CoFe0.8nm/NiFe3.8nm/ Ta5nm/Cu0.5nm
“To do” list for MAGEN2 program • bugs fixing • experimental data in background • more layers • 3D axis of anisotropy and field definition • animation of magnetisation vector of each ferromagnetic layer during simulation process • GMR/TMR characteristics
S-W model for monolayer • Total energy E = EH+ EU + ED • Zeeman energy • Anisotropy energy • Demagnetizing energy Field in plane (Nx=Ny0, Nz1):
4. Example of Magnetic Tunneling Junction Energy density model: Ta – 50Å NiFe – 100Å CoFe – 25 Å Al2O3 – 15 Å CoFe – 25 Å MnIr – 100Å Cu – 50 Å NiFe – 20 Å Ta – 50 Å Cu – 100 Å Ta – 50 Å Substrate Si (100)