370 likes | 512 Views
Development of GEM-based Digital Hadron Calorimetry Andy White U.Texas at Arlington (for J.Yu, J.Li, M.Sosebee, S.Habib, V.Kaushik). Outline. GEM operation/features First UTA GEM prototype - structure, electronics – results: cosmics, source Multichannel prototype
E N D
Development of GEM-based Digital Hadron Calorimetry Andy White U.Texas at Arlington (for J.Yu, J.Li, M.Sosebee, S.Habib, V.Kaushik) American Linear Collider Workshop Cornell U.
Outline • GEM operation/features • First UTA GEM prototype - structure, electronics – results: cosmics, source • Multichannel prototype • Digital hadronic module ideas • Funding, collaboration American Linear Collider Workshop Cornell U.
Double GEM schematic Create ionization Multiplication Signal induction From S.Bachmann et al. CERN-EP/2000-151 American Linear Collider Workshop Cornell U.
140mm 70mm GEM foil etching GEM field and multiplication From CERN-open-2000-344, A. Sharma American Linear Collider Workshop Cornell U.
GEM foil hole size American Linear Collider Workshop Cornell U.
GEM operations and features • Simple, robust • Stackable (single, double, triple) • Fast – electron signal 5ns • Relatively low voltage (~400V/foil) • Flexible – almost any anode design • Durable – no aging in extended tests • Gain 102 – 106 American Linear Collider Workshop Cornell U.
Embeded onboard readout Ground to avoid cross-talk Design for DHCAL using Triple GEM American Linear Collider Workshop Cornell U.
First UTA GEM Prototype • Double GEM detector constructed using 10x10 cm2 foils from CERN. • Single 1x2 cm2 anode pad. • Charge preamp, then voltage amp. • Cosmic trigger, small counters, low rate! • Signal verification: no signal with (a) trigger counters displaced from anode pad, (b) air in GEM detector. American Linear Collider Workshop Cornell U.
UTA GEM-based Digital Calorimeter Prototype American Linear Collider Workshop Cornell U.
Anode pad layout 1x2 cm2 pad American Linear Collider Workshop Cornell U.
UTA GEM prototype – high voltage American Linear Collider Workshop Cornell U.
American Linear Collider Workshop Cornell U.
GEM Prototype with preamp/voltage amp American Linear Collider Workshop Cornell U.
Amptek charge pre-amplifier American Linear Collider Workshop Cornell U.
GEM prototype – trigger counters American Linear Collider Workshop Cornell U.
UTA GEM Calorimeter prototype Single cosmic event: upper = trigger, lower = preamp output American Linear Collider Workshop Cornell U.
GEM cosmic signal distribution with Landau fit American Linear Collider Workshop Cornell U.
GEM prototype – source tests • Cs137 source, ~1 MeV electrons • Wall of prototype thinned to allow electrons to reach ionization region of GEM, and use of thin trigger scintillators. • Rate much higher than cosmics! • Used secondary output of charge amplifier to generate ADC gate. • Study signals, noise, gain,… American Linear Collider Workshop Cornell U.
GEM prototype – source tests Source signal Noise American Linear Collider Workshop Cornell U.
Signal Amplitude (mV) Landau Distribution from Cs137 Source American Linear Collider Workshop Cornell U.
GEM/MIP Signal Size Computation • Double GEM – applied 419V/stage • Total Ionization (C): ~93 i.p./cm • 48 e-/MIP (5mm gap) • Double GEM Intrinsic Gain: G • Charge preamp sensitivity (GC) : 0.25 V/e- • Voltage amp. X10 (GV) • Output signal = C x G x GC x GV • Observed ~370mV signal (mean of Landau) • G = 3100 ± 20% (need better amplifier calibration) American Linear Collider Workshop Cornell U.
Measured UTA GEM Gain UTA Prototype CERN GDD group measurements American Linear Collider Workshop Cornell U.
Multichannel prototype • Next step: a 3 x 3 array of 1 cm2 pads. • Allows one central pad with neighbors for cross-talk tests. • Use a single layer board for simplicity. • Use e.g. HELIX chip for readout. • Anode board built, prototype being reworked. American Linear Collider Workshop Cornell U.
Nine Cell GEM Prototype Readout American Linear Collider Workshop Cornell U.
GEM module ideas • Start from basic TESLA detector layout • Try simple design with GEM “drawers” slid into slots in absorber (formed from plates and spacers). • GEM layer ~6mm, readout layer ?mm. • Readout – amplifier, discriminator, register per channel close to anode pad. Multilayer board with multiple ground planes. • Working on existence proof of readout, services, module boundaries, supports, … American Linear Collider Workshop Cornell U.
American Linear Collider Workshop Cornell U.
American Linear Collider Workshop Cornell U.
TESLA – HCAL Layout American Linear Collider Workshop Cornell U.
DHCAL/GEM Module concepts Use half-size modules w.r.t. TESLA design American Linear Collider Workshop Cornell U.
Design concept for sensitive layer 3mm ionization layer American Linear Collider Workshop Cornell U.
DHCAL-GEM Layer structure • GEM layer -> 6mm • Electronics layer ~3mm • Absorber thickness 16mm x 40 layers • -> ~ 4 interaction lengths for HCAL • - 10x10 mm2 cell size -> ~1.5 x 107 channels for DHCAL-GEM American Linear Collider Workshop Cornell U.
DHCAL/GEM Module concepts End view Side view Bottom view American Linear Collider Workshop Cornell U.
DHCAL/GEM Module concepts GEM layer slides into gap between absorber sheets American Linear Collider Workshop Cornell U.
GEM operation in magnetic field • Electrons drift along E-field lines which are ~radial in the overall detector frame. • However, B-field exists in orthogonal direction. • Forces on electron from E and B ~ equal • -> so…expect ~45 deg. drift. B drift E American Linear Collider Workshop Cornell U.
Funding • DoE ADR funding for year 1 completed -> Prototypes working, many simulation results (see talk by Jae Yu at this meeting) • Request for two more subsequent years of ADR funding • First year of the two funded for ½ student and ½ engineer/postdoc • Equipment funds through ADR + LCRD • Allows us to contemplate construction of a larger size GEM prototype American Linear Collider Workshop Cornell U.
Collaboration • Discussions with Fermilab (Physics dept.) re support for development of: - readout electronics (amplifier, discriminator, …) - electronics “layer” - GEM calorimeter stack for test beam Agreement (June ’03) to proceed. American Linear Collider Workshop Cornell U.
Conclusions • Built and operated first prototype • Cosmic and source results – gain OK • Multi-channel prototype being built • First ideas on module design • Funding in place for another year • Collaboration with Fermilab agreed. American Linear Collider Workshop Cornell U.