1 / 48

“ 우주는 실재하지만 볼 수는 없다 . 상상할 수 있을 뿐이다 .”

우주. “ 우주는 실재하지만 볼 수는 없다 . 상상할 수 있을 뿐이다 .” “The universe is real but you can’t see it. You have to imagine it.” Alexander Calder (1898-1976). 우리 우주의 역사. 팽창 중 유한한 과거에 팽창시작 간접 추정 나이 ~138 억년 그 전은 ? 처음 38 만년은 빛의 시대 그 후 물질시대 → 은하 , 별 , 행성 , 생명 형성 우리은하에 오래된 천체 ~ 138 억년

oscar-cross
Download Presentation

“ 우주는 실재하지만 볼 수는 없다 . 상상할 수 있을 뿐이다 .”

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 우주

  2. “우주는 실재하지만 볼 수는 없다. 상상할수 있을 뿐이다.” “The universe is real but you can’t see it. You have to imagine it.” Alexander Calder (1898-1976)

  3. 우리 우주의 역사 • 팽창 중 • 유한한 과거에 팽창시작 • 간접 추정 나이 ~138억년 그 전은? • 처음 38만년은 빛의 시대 • 그 후 물질시대 → 은하, 별, 행성, 생명 형성 • 우리은하에 오래된 천체 ~ 138억년 별들은 지금도 계속 만들어지고 있음. • 태양계와 지구의 나이 ~ 46억년 우리은하에서 후발주자! 미래는? JH

  4. 우리우주의 규모 • 은하들의 분포가 큰 영역(~수억 광년 이상)에서 대략 균일. (가정!) • 볼 수 있는 영역 ~138억 광년 그 너머는? • 볼 수 있는 영역 안에 ~천억 개 은하 • 우리은하 안에 ~천억 개 별 우리은하 크기 ~지름 10만 광년인 원반 • 태양계 안에 수십 개의 행성급 천체 • 최근, 태양계 근처 별들에서 수백 개의 행성 발견 JH

  5. “천상에 대한 연구가 매혹적이고 중요한 것은 단지 그에 대한 우리의 지식이 불완전하다는 것으로 유지된다.” “The charm and importance of a study of the heavens was matched only by the uncertainty of the knowledge produced.” Aristotle (384-322 B.C.) JH

  6. 4. Redshift-distance Relation • The redshift z is proportional to the distance d: • z c ~ H d • Interpreted as due to the recession of the galaxies: • v ~ z c for v ≪ c. • Difficult to prove! • Alternatives: Expanding space, Receding motion, Gravity, Decreasing c or h, Increasing mass or e, • Shrinking atom, Tired light, … • Currently favored value shows • H0 = 72 ± 7 km/sec/Mpc (HST) • And acceleration Dark Energy?

  7. Type Ia SN Hubble diagram Accelerating 76% DE repulsive! Reiss, A. G. et al, ApJ 116, 1009 (1998) Figure 4.

  8. Recent UNION2 data Accelerating 73% DE repulsive! 557 SNe data in Amanullah, R., et al, ApJ 716, 712 (2010). Figure by Dr. Chan-Gyung Park

  9. 우주배경복사빛으로 본 가장 먼 곳

  10. CMB Spectrum 100 x error bar COBE (1989)

  11. Complete Photon Spectrum CMB

  12. CMB Complete Sky isotropic 2.725 K

  13. δT/T ~10-3 level Dipole:perhaps due to our motion relative to CMB rest frame

  14. δT/T ~10-5 level WMAP Satellite

  15. WMAP

  16. WMAP Temperature-polarization anisotropies cosmic variance http://map.gsfc.nasa.gov/

  17. COBE 우주팽창 후 38만년일 때 모습 (1992) http://lambda.gsfc.nasa.gov/product/cobe/dmr_image.cfm

  18. WMAP 우주팽창 후 38만년일 때 모습 (2003) http://map.gsfc.nasa.gov/media/121238/index.html

  19. Planck 우주팽창 후 38만년일 때 모습 (2013) http://www.esa.int/Our_Activities/Space_Science/Planck

  20. http://www.esa.int/Our_Activities/Space_Science/Planck

  21. http://spaceinimages.esa.int/Images/2013/03/Planck_WMAP_comparisonhttp://spaceinimages.esa.int/Images/2013/03/Planck_WMAP_comparison

  22. Planck 2013 results. I. Overview of products and scientific results [astro-ph/1303.5062]

  23. Planck 2013 results. I. Overview of products and scientific results [astro-ph/1303.5062] Table.9

  24. http://www.esa.int/Our_Activities/Space_Science/Planck/Planck_reveals_an_almost_perfect_Universehttp://www.esa.int/Our_Activities/Space_Science/Planck/Planck_reveals_an_almost_perfect_Universe

  25. http://spaceinimages.esa.int/Missions/Planck/(class)/image

  26. 7. Ages • Age estimation of the globular clusters reduced by ~15% • Age of the world model increased due to the acceleration. • Recent estimation: • t = 13.7 ± 0.2 Gyr (WMAP) • The proximity of the age of the world model and the age of the oldest stars is a big triumph of the standard world model.

  27. 은하 분포은하들이 보여주는 우주의 구조

  28. 8. Galaxy Clustering • Statistical patterns of the large-scale distributions of the observed (luminous) and gravitating (causing radial velocity) matter. • Demand violation of Newton’s gravity or presence of dark matter in galactic and cluster scales.

  29. SDSS z ~ 0.06 d ~ 200h-1Mpc 66,976 out of 205,443 galaxies Astronomy picture of the day October 28 2003

  30. 우주거대구조 거리 SDSS z ~ 0.06 d ~ 6h-1억 광년 z = v/c ~ 0.03 d = v/H ~ 3h-1억 광년 de Lapparent etal. (1986) Coma cluster http://www.sdss.org/

  31. SDSS in comoving scale r =19Gpc revent horizon zrec~1089 z ~∞ rparticle horizon z ~1.7, r~4.7 = r z ~2., r~5.2 proper distance z ~1., r~3.3 z ~.5, r~1.9 Gott, J. R., et al., astro-ph/0310571 (2003)

  32. SDSS in look-back time scale 빅뱅 137억년 전 50억년 전 Gott, J. R., et al., astro-ph/0310571 (2003)

  33. Density power spectrum linear Blue line: 5% dust, 25% DM, 70% DE quasi-linear non-linear Tegmark, M., et al, http://xxx.lanl.gov/pdf/astro-ph/0207047

  34. SDSS DR7 LRG Baryonic Acoustic Oscillation (BAO) Reid et al, arXiv:0907.1659v2 

  35. A galaxy cluster SDSS J1004+4112. It is one of the more distant clusters known (seven billion light-years, redshift z=0.68), and is seen when the Universe was half its present age. The image contains a single distant quasar lensed into five images, a rich abundance of arcs from lensed background galaxies and a supernova. http://www.spacetelescope.org/news/html/heic0606.html

  36. Estimated distribution of dark matter and dark energy in the universe http://www.nasa.gov/vision/universe/starsgalaxies/Collision_Feature.html

  37. 9. Element Abundances • We have theoretical range of the abundances of the Hydrogen, Helium and Litium which are consistent with observation. • H, D, 3He, 4He, 7Li • Primordial Nucleosynthesis: one of pillars of hot big-bang cosmology. • A modern myth.

  38. Cosmological Principle On a sufficiently large scale the Universe is homogeneous and isotropic in space.

  39. Ancient Hindu Cosmological Principle “The Universe is infinitely heterogeneous; our [place] is not an exceptional feature, neither in space nor in time, but it is also not typical, not average (it is impossible to obtain any mean, any average value out of infinitely dispersed parameters).” Rudnicki (1982) The universe cycles between expansion and total collapse, with an infinite number of universes at one given point of time. “There are innumerable universes besides this one.” Bhagavata Purana 6.16.37

  40. Assumptions and Limits • Good luck assumption • Unverifiable! • Scientific policy • “Ockham’s razor”, minimal assumption attitude. • Unverifiable! • Uncertainty • Both random (in measurements) • and systematic (in assumptions) errors. • Further loophole • Any explanation may not be unique. “The normal physical laws we determine in our space-time vicinity are applicable at all other space-time points.” G. F. R. Ellis (1975)

  41. We need Testable Measures • Homogeneity measures • Isotropy measures • Linearity measures

  42. 내가 그 박식한 천문학자의 말을 들었을 때, 증명과 숫자들이 내 앞에 줄지어 싸여있었을 때, 더하고, 나누고, 측정할 도표와 도형들이 내 앞에 보여졌을 때, 내가 앉아서 그 천문학자가 강의실에서 큰 박수를 받으며 강의하는 것을 들었을 때, 나는 까닭 모르게 곧 피곤하고 실증이 나서, 자리에서 일어나 밖으로 빠져 나온 뒤 나 홀로 거닐면서, 촉촉하고 신비로운 밤 공기 속에서, 이따금, 하늘의 별들을 말없이 올려다보았다. Walt Whitman (1865) 『When I Heard the Learn'd Astronomer』

  43. SDSS DR7 LRG Baryonic Acoustic Oscillation (BAO) Reid et al, arXiv:0907.1659v2 

  44. Planck 2013 results. I. Overview of products and scientific results [astro-ph/1303.5062]

  45. Planck 2013 results. I. Overview of products and scientific results [astro-ph/1303.5062] Table.9

  46. Ωm-ΩΛ with CMB, BAO, and SCP Union2.1 SN Constraints http://supernova.lbl.gov/Union/

  47. http://en.wikipedia.org/wiki/Big_bang

  48. Planck 2013 results. XXII. Constraints on inflation [astro-ph/1303.5082]

More Related