1 / 41

Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu

Chabot Mathematics. §6.2 Numerical Integration. Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu. 6.1. Review §. Any QUESTIONS About §6.1 → Integration by Parts, Use of Integral Tables Any QUESTIONS About HomeWork §6.1 → HW-01. §6.2 Learning Goals.

osgood
Download Presentation

Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chabot Mathematics §6.2 NumericalIntegration Bruce Mayer, PE Licensed Electrical & Mechanical EngineerBMayer@ChabotCollege.edu

  2. 6.1 Review § • Any QUESTIONS About • §6.1 → Integration by Parts, Use of Integral Tables • Any QUESTIONS About HomeWork • §6.1 → HW-01

  3. §6.2 Learning Goals • Explore the trapezoidal rule and Simpson’s rule for numerical integration • Use error bounds for numerical integration • Interpret data using numerical integration

  4. Numerical Integration Why Numerical Methods? • Very often, the function f(x) to differentiate, or the integrand to integrate, is TOO COMPLEX to yield exact analytical solutions. • In most cases in Real World testing, the function f(x) is only available in a TABULATED form with values known only at DISCRETE POINTS

  5. Game Plan: Divide Unknown Area into Strips (or boxes), and Add Up Numerical Integration • To Improve Accuracy the TOP of the Strip can Be • Slanted Lines • Trapezoidal Rule • Parabolas • Simpson’s Rule • Higher Order PolyNomials

  6. Strip-Top Effect • Trapezoidal Form • Parabolic (Simpson’s) Form • Higher-Order-Polynomial Tops Lead to increased, but diminishing, accuracy.

  7. Strip-Count Effect 10 Strips 20 Strips • Adaptive Integration → INCREASE the strip-Count in Regions with Large SLOPES • More Strips of Constant Width Tends to work just as well

  8. AUC by Flat Tops

  9. Trapezoidal Area • By the Diagram at Right • Side Heights: • Width: • Now “Stack Up” for 2A • Then • or

  10. AUC by Trapezoids

  11. The Trapezoidal Rule • To Find the APPROXIMATE Area Under the Curve given by y = f(x), and divided into vertical strips of equal width, Δx • Where:

  12. Trapezoidal Rule Error • AUC by the Trapezoidal Approximation incurs error in the amount of • Where • n ≡ the strip count • K ≡ the maximum value of |d2y/dx2|

  13. Trapezoidal Rule Error Example • The Function does NOT have a Closed Form, Analytical Solution • Calculate the Area Under the Curve for this function between x=1 & x=3 using a 10-strip Trapezoidal Calculation

  14. Trapezoidal Rule Error Example • CalculateΔx • Then make Fcn T-Table using • ThenTheT-Table • Then theApproximation

  15. Trapezoidal Rule Error Example • ReCall from Error Equation • Taking the Derivative Twice • Plot d2y/dx2to EyeBallMax Value • Maximumat x = 3

  16. Trapezoidal Rule Error Example • Then • Thus, to 5 Sig-Figs: • Finally the Maximum 10-Strip, Trapezoidal Error

  17. Simpson’s Rule • The Simpson Method tops TWO Strips with successive 3-pt Curve-Fit Parabolas • A Parabola can befit EXACTLY to ANY 3 (x,y) points

  18. Simpson’s Rule • Since 3-pts defines 2-strips Simpson’s Rule requires an EVEN Strip-Count • Then for an Even Counting Number, n • if M = max(|d4y/dx4|)then the Error

  19. Simpson’s Rule Example • Use Simpson’s rule with n = 10 strips to approximate: • SOLUTION • From the Trapezoidal example Δx = 0.2 • Now the SideWays T-Table

  20. Find Precise Value by MuPAD • The Integrand Function • fOFx := E^x/x • Plot the AREA under the Integrand Curve • fArea := plot::Function2d(fOFx, x = 1..3):plot(plot::Hatch(fArea), fArea) • The Precise Value • AUCn = numeric::int(fOFx, x=1..3)

  21. Simpson’s Error • Find Fourth Derivative by MuPAD • d4fdx4 := diff(fOFx, x $ 4) • Then the 4th Derivative Plot • plot(d4fdx4, x=1..3, GridVisible = TRUE) • Max at x=1

  22. Simpson’s Error • Then the Error Calc • The Error comparing to MuPAD Value • Thus the TextBook Formula is Conservative

  23. NO Equation Functions • Often in REAL LIFE “functions” disguise themselves as “Data Tables” • When I was Research Tech at Lawrence Berkeley Lab (1978) I made Ventilation-Duct Volume-Flow measurements. A typical Data Set

  24. NO-Equation Functions • I then had to Calculate the Duct Volume Flow, Q, from the Data Table using the integration • This type of Integration OccursFrequently in the Physical, Life, and Social Sciences, aswell as in the Business world

  25. NO-Eqn Integration Example • The Cylindrical Tank shown at right has a bottom area of 130 ft2 . The tank is initially EMPTY. To Fill the Tank, Water Flows into the top at varying rates as given in the Tank-Table below.

  26. NO-Eqn Integration Example • For this situation determine the water height ,H, at t = 18 minutes • SOLUTION • Use the TRAPEZOIDAL Rule to Integrate the WaterFlow to arrive at the the Total Water VOLUME • Use the Max No. of strips permitted by Data

  27. NO-Eqn Integration Example • Make ΔV Calcsfor the 10 strips • Then by GeoMetry • So Finally

  28. NO-Eqn Integration Example • Note that in this case Δx is NON-constant • 10 Strips of Varying Width • Thus SIMPSON’s Rule Can NOT be Used • Simpson’s RuleRequires constant Δx

  29. % Bruce Mayer, PE % MTH-15 • 01Aug13 • Rev 11Sep13 % MTH15_Quick_Plot_BlueGreenBkGnd_130911.m % clear; clc; clf; % clf clears figure window % % The Domain Limits xmin = -6; xmax = 6; % The FUNCTION ************************************** x = [0 1 3 5 6 9 11 12 13 15 18]; y = [0 80 130 150 150 160 165 170 160 140 120]; % *************************************************** % the Plotting Range = 1.05*FcnRange ymin = min(y); ymax = max(y); % the Range Limits xmin = min(x); xmax = max(x); % the Range Limits R = ymax - ymin; ymid = (ymax + ymin)/2; ypmin = ymid - 1.025*R/2; ypmax = ymid + 1.025*R/2 % % The ZERO Lines zxh = [xminxmax]; zyh = [0 0]; zxv = [0 0]; zyv = [ypmin*1.05 ypmax*1.05]; % % the 6x6 Plot axes; set(gca,'FontSize',12); whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Green plot(x,y, '-d', 'LineWidth', 4),grid, axis([xminxmaxypminypmax]),... xlabel('\fontsize{14}t (min)'), ylabel('\fontsize{14}Q = (ft^3/min)'),... title(['\fontsize{16}MTH16 • Bruce Mayer, PE',]),... annotation('textbox',[.53 .05 .0 .1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'MTH15 Quick Plot BlueGreenBkGnd 130911.m','FontSize',7) hold on plot(zxv,zyv, 'k', zxh,zyh, 'k', 'LineWidth', 2) stem(x,y, '-r.', 'LineWidth', 2) hold off MatLab Code

  30. WhiteBoard Work • Problems From §6.2 • P40 → Consumer’s Surplus

  31. All Done for Today TrackingTrapezoids

  32. Chabot Mathematics Appendix Do On Wht/BlkBorad Bruce Mayer, PE Licensed Electrical & Mechanical EngineerBMayer@ChabotCollege.edu –

  33. P6.2-40 MatLAB Code % Bruce Mayer, PE % MTH-16 • 11Jan14 % MTH15_Quick_Plot_BlueGreenBkGnd_130911.m % clear; clc; clf; % clf clears figure window % % The FUNCTION ************************************** x = [0:4:24]; y = [49.12 42.9 31.32 19.83 13.87 10.58 7.25]; % *************************************************** % the Plotting Range = 1.05*FcnRange ymin = min(y); ymax = max(y); % the Range Limits xmin = min(x); xmax = max(x); % the Range Limits R = ymax - ymin; ymid = (ymax + ymin)/2; ypmin = ymid - 1.025*R/2; ypmax = ymid + 1.025*R/2 ypmin =0 % % The ZERO Lines zxh = [xminxmax]; zyh = [0 0]; zxv = [0 0]; zyv = [ypmin*1.05 ypmax*1.05]; % % the 6x6 Plot axes; set(gca,'FontSize',12); whitebg([1 1 1]); % Chg Plot BackGround to Blue-Green plot(x,y, '-d', 'LineWidth', 4),grid, axis([xminxmaxypminypmax]),... xlabel('\fontsize{14}q (kUnits)'), ylabel('\fontsize{14}p ($/Unit)'),... title(['\fontsize{16}MTH16 • Bruce Mayer, PE',]),... annotation('textbox',[.53 .05 .0 .1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'MTH15 Quick Plot BlueGreenBkGnd 130911.m','FontSize',7) hold on plot(zxv,zyv, 'k', zxh,zyh, 'k', 'LineWidth', 2) stem(x,y, '-r.', 'LineWidth', 2) plot([xmin, xmax], [7.25 7.25], '-.m', 'LineWidth', 3) hold off x = [0 4 8 12 16 20 24] y = [49.1200 42.9000 31.3200 19.8300 13.8700 10.5800 7.2500] ps = y-ymin M = [1 4 2 4 2 4 1] CS1 = ps.*M CS2 = (4/3)*CS1 CS3 = sum(CS2) CS4 = sum(CS1) CStot = (4/3)*CS4

  34. Example  NONconstant∆x • Pacific Steel Casting Company (PSC) in Berkeley CA, uses huge amounts of electricity during the metal-melting process. • The PSC Materials Engineer measures the power, P, of a certain melting furnace over 340 minutes as shown in the table at right. See Data Plot at Right.

  35. Example  NONconstant∆x • The T-table at Right displays the Data Collected by the PSC Materials Enginer • Recall from Physics that Energy(or Heat), Q, is the time-integralof the Power. • Use Strip-Integration to find theTotal Energy in MJ expended byThe Furnace during this processrun

  36. Example  NONconstant∆x • GamePlan for Strip Integration • Use a Forward Difference approach • ∆tn = tn+1 − tn • Example: ∆t6 = t7 − t6 = 134 − 118 = 16min → 16min·(60sec/min) = 960sec • Over this ∆t assume the P(t) is constant at Pavg,n =(Pn+1 − Pn ) • Example: Pavg,6 = (P7 − P6)/2 = (147+178)/2 = 162.5 kW = 162.5 kJ/sec

  37. Example  NONconstant∆x • The GamePlanGraphically • Note the VariableWidth, ∆x,of the StripTops

  38. % Bruce Mayer, PE % MTH-15 • 25Jul13 % XY_Area_fcn_Graph_6x6_BlueGreen_BkGnd_Template_1306.m % clear; clc; clf; % clf is clear figure % % The FUNCTION xmin = 0; xmax = 350; ymin = 0; ymax = 225; x = [0 24 24 45 45 74 74 90 90 118 118 134 134 169 169 180 180 218 218 229 229 265 265 287 287 340] y = [77 77 105.5 105.5 125 125 136 136 152 152 162.5 162.5 179 179 181 181 192 192 208.5 208.5 203 203 201 201 213.5 213.5] % % The ZERO Lines zxh = [xminxmax]; zyh = [0 0]; zxv = [0 0]; zyv = [yminymax]; % % the 6x6 Plot axes; set(gca,'FontSize',12); whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Green % Now make AREA Plot area(x,y,'FaceColor',[1 0.6 1],'LineWidth', 3),axis([xminxmaxyminymax]),... grid, xlabel('\fontsize{14}t (minutes)'), ylabel('\fontsize{14}P (kW)'),... title(['\fontsize{16}MTH15 • Variable-Width Strip-Integration',]),... annotation('textbox',[.15 .82 .0 .1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'Bruce Mayer, PE • 25Jul13','FontSize',7) set(gca,'XTick',[xmin:50:xmax]); set(gca,'YTick',[ymin:25:ymax]) set(gca,'Layer','top') MATLAB Code

  39. Example  NONconstant∆x • The NONconstant Strip-Width Integration is conveniently done in an Excel SpreadSheet • The 13 ∆Q strips Add up to 3456.69 MegaJoulesof Total Energy Expended

More Related