640 likes | 884 Views
第 5 章 串行口与通信. 本章学习目标 : 了解并行通信与串行通信的含义 理解波特率的概念,学会波特率的计算方法 能按要求正确设置特殊功能寄存器 SCON 和 PCON 的 SMOD 位 能区分串行口的 4 种工作方式, 熟悉方式 1 、方式 2 、方式 3 程序的编制方法 知道 RS-232C 、 RS-422A 和 RS485 基本性能 理解双机通信和多机通信的基本过程 能读懂教材中的控制实例,学会编写同等难度的控制程序. 5.1串行通信的基础知识.
E N D
第5章 串行口与通信 • 本章学习目标 : • 了解并行通信与串行通信的含义 • 理解波特率的概念,学会波特率的计算方法 • 能按要求正确设置特殊功能寄存器SCON和PCON的SMOD位 • 能区分串行口的4种工作方式, 熟悉方式1、方式2、方式3 程序的编制方法 • 知道RS-232C、RS-422A和RS485 基本性能 • 理解双机通信和多机通信的基本过程 • 能读懂教材中的控制实例,学会编写同等难度的控制程序
5.1串行通信的基础知识 在实际应用中,80C51单片机经常要与外设进行信息交换;单片机与单片机之间或单片机与计算机之间往往也要交换信息,这些信息交换都可以称为通信。 数据通信的传输方式:并行通信和串行通信 并行通信:数据的各位同时送出。占用I/O多,速度快。 串行通信:数据的各位逐位送出。线路简单,速度慢。 传送数据1101 0010B时并行通信和串行通信的示意图。
5.1.1串行通信的制式 按照信息传送的方向,串行通信可分为3种制式。 1.单工制式 2.半双工制式 3.全双工制式
5.1.2串行通信的方式 串行通信有两种基本的通信方式:同步通信与异步通信。 1.异步通信(Asynchronous Communication) 在异步通信中,数据通常是以字符(或字节)为单位组成字符帧传送的。字符帧由发送端逐帧发送,接收端逐帧接收。发送端和接收端由各自的时钟来控制。这两个时钟源可以彼此独立、互不同步。 在帧格式中,一个字符由4个部分组成:起始位、二进制数据位、奇偶校验位和停止位。下图给出了典型的异步帧格式。
5.1.2串行通信的方式 2.同步通信(Synchronous Communication) 同步通信在发送一组数据时,只在开始用1~2个同步字符作为双方取得同步的号令,然后连续发送整组数据。不像异步通信那样将字符一个一个地分开来传送。格式下图所示。
5.1.3串行通信的传输速率 所谓传输速率就是指每秒传输多少位,传输速率也称波特率(bps)。 如果数据传送的速率是120帧/秒,每个帧包含10位,则波特率为 10×120=1200 bps,于是每位传送的时间 T=1/1200=0.833ms 标准波特率系列为110、300、600、1200、1800、2400、4800、9600和19200bps。
5.1.4调制解调器(MODEM 又称猫) 在进行远程异步串行数据通信时,二进制的数据位在传输时会出现畸变,可以利用调制解调器解决这个问题。 利用调制解调器进行数据远距离串行通信的过程如下图所示。
5.2串行口的基本结构和工作方式 5.2.1串行口的基本组成 发送缓冲器SBUF只能写入不能读出。 全双工的串行通信口,可同时接收和发送。 接收和发送缓冲器SBUF在物理上共用一个地址99H。 接收缓冲器SBUF只能读出不能写入。
5.2.2串行口的特殊功能控制寄存器 与串行口有关的特殊功能寄存器有SBUF、SCON、PCON,与串行口中断有关的特殊功能寄存器有IE、IP. 1.串行口发送/接收缓冲器SBUF(99H) 2.串行口控制寄存器SCON SCON的各位的定义和功能如下:
SM0、SM1: 串行口工作方式选择位(内容见5.2.3节)。 • SM2: 多机通信控制位。具体用法见5.3.3节。 • REN: 串行接收允许位。由软件置1或清0。软件置1时,串行口允许接收,清0后禁止接收。 • TB8: 在方式2和方式3中是发送的第9位数据。 • RB8: 在方式2和方式3中是接收的第9位数据。 • TI: 发送中断标志位。发送结束时由硬件置位。该位必须用软件清零。 • RI: 接收中断标志位。结束接收时由硬件置位。该位必须用软件清零。
3.电源控制寄存器PCON 串行口借用了电源控制寄存器PCON的最高位。PCON是8位寄存器,字节地址为87H,不可进行位寻址。它的低4位全部用于80C51/80C31子系列单片机的电源控制。只有最高位SMOD位用于串行口波特率系数的控制。当SMOD=l时,方式1、2、3的波特率加倍,否则不加倍。PCON的格式如下:
5.2.3串行口的四种工作方式 80C51单片机串行口有4种工作方式,用特殊功能寄存器SCON中的SM0、 SM1两位进行设定,见表5-1。
1.方式0 (1)特点 用于串行I/O口扩展,有固定的波特率,为fOSC/12。 同步发送/接收功能,由TXD提供移位脉冲,RXD用作数据输入/输出通道。 发送接收8位数据,低位在前,高位在后。(2)发送操作由指令MOV SBUF,A 启动发送操作,发送时由TXD输出移位脉冲,RXD发送SBUF中的数据。发送完8位数据后,TI自动置1,请求中断。要继续发送时,TI必须由指令清0(CLR TI)。(3)接收操作在RI=0的前提下,用指令置REN=1,可以启动一帧数据的接收。同样由TXD输出移位脉冲,由RXD接收串行数据。接收完一帧RI自动置1,请求中断。想继续接收时要用指令清除RI。
2.方式1 (1)特点 8位异步串行通信UART接口。 帧结构为10位,包括起始位0,8位数据位,1位停止位。 波特率由软件设置,由T1的溢出率决定。 (2)发送操作 由指令MOV SBUF,A 启动A中的数据从TXD端异步发送。发送完一帧数据后,TI自动置1,请求中断。要继续发送时,TI必须由指令清0(CLR TI)。 (3)接收操作 在RI=0的前提下,用指令置REN=1,启动一帧数据的接收。串行口采样RXD,当采样到1至0的跳变时,表明接到串行数据的起始位,开始接收一帧数据,直到停止位到来时,把停止位送到RB8中,此时RI自动置1,请求中断并通知CPU从SBUF中取走已接收到的数据 。想继续接收时要用指令清除RI。
3.方式2和方式3 方式2和方式3具有多机通信功能,两种方式除了波特率设置不同外,其余功能完全相同。 (1)特点 8位异步串行通信UART接口。帧结构为11位,包括起始位0,8位数据位,1位可编程位TB8/RB8,1位停止位。 方式2的波特率固定,由PCON中的SMOD位选择,当SMOD=0时,波特率为fOSC/64;当SMOD=1时,波特率为fOSC/32;SMOD位状态用软件设置。见表5-1。
3.方式2和方式3 (2)发送操作 发送操作前,用指令定义TB8(如作为奇偶校验位或地址/数据标志位),由指令MOV SBUF,A 将A中的数据送入SBUF后启动发送操作;在发送操作中,已定义的TB8位能自动加入待发送的8位数据之后构成第9位,这样组成的一帧完整数据自动从TXD端异步发送;发送完成后,TI自动置1,请求中断。要继续发送时,TI必须由指令清0(CLR TI)。 在多机通信的发送操作中,用TB8作地址/数据标志位。TB8=1,地址帧;TB8=0,数据帧。
3.方式2和方式3 • (3)接收操作 • 在RI=0的前提下,用指令置REN=1,启动一帧数据的接收,将接收数据的第9位送入RB8。该数据能否接收,要由SM2和RB8的状态决定: • SM2=0时,串行口不看RB8状态,无条件接收。 • SM2=1是多机通信方式,接收到的RB8是地址/数据标志位: • 若RB8=1,接收的信息是地址,此时RI自动置1,串行口接收发送来的数据。 • 若RB8=0,接收的信息是数据。对于SM2=1的从机,RI不置1,此数据丢失;对于SM2=0的从机,SBUF自动接收发来的数据。
5.3串行通信的常用标准接口 80C51单片机常与其它51单片机或PC机进行串行通信。 80C51单片机串行接口的信号电平为TTL类型,抗干扰能力差,传输距离短。为了提高串行通信的可靠性,延长通信距离,工程设计人员一般采用标准串行接口,如RS-232C、RS-422A和RS-485等。这三种接口最初都是由美国电子工业协会(EIA)制订并发布的。
5.3.1 RS-232C接口 RS-232C(又称 EIA RS-232-C)是目前PC机与通信工业中应用最广泛的一种串行接口。图5-7是利用RS-232C通过电话网实现远程通信的示意图。 图5-7 RS-232C通过电话网实现远程通信的示意图
1.接口信号 RS-232C是EIA在1969年推出的。全名是“数据终端设备DTE(如计算机和各种终端机)和数据通讯设备DCE(如调制解调器MODEM)之间串行二进制数据交换接口技术标准”。它适合于数据传输速率在0~20 000bps范围内的通信。 图5-8 RS-232C串口结构
目前较为常用的RS-232C有9针串口(DB9)和25针串口(DB25),结构分别如图5-8所示。在保证通信准确性的前提下,如果通信距离较近 (小于12米),可以用电缆线直接连接,图5-9是这种连接方式的示意图;若距离较远,需附加调制解调器(MODEM),见图5-7。 图5-9 近程通信示意图
实际上DB25中有许多引脚很少使用,在计算机与终端通讯中一般只使用3-9条引线。最常用的9条引线的信号内容见表5-2所示。最为简单且常用的是三线制接法,即地、接收数据和发送数据三脚相连。传输线采用屏蔽双绞线。如图5-10 所示。 图5-10 RS-232C串口结构
2.逻辑电平 • RS-232C是早期为促进公用电话网络进行数据通信而制定的标准。它采用负逻辑,即 • -3V~-15V规定为“1”; • +3V~+15V规定为“0”; • -3V~+3V为过渡区,不做定义。
3.电平转换芯片与接口电路 RS-232C信号的电平和单片机串口信号的电平不一致,必须进行二者之间的电平转换。常用芯片有MC1488(TTL转换成RS-232C信号)、MC1489(RS-232C信号转换成TTL)等。另一种常用的集成电平转换芯片MAX232可以实现RS-232C/TTL电平的双向转换,它只使用单一的+5V电源供电,配接4个1μF电解电容即可完成RS-232电平与TTL电平之间的转换。其原理图如图5-11所示。转换完毕的串口信号TXD、RXD直接和80C51的串行口连接。
图5-11 电平匹配原理图 注:1.为提高电路抗干扰能力,C1~C4要用钽电容1.0μF/16V,且尽 量靠近MAX232; 2. MAX232对噪声很敏感,在VCC与GND之间加C5=0.1μF,起去耦作用
5.3.2 RS-485接口 1.性能特点 RS-485以良好的抗噪声干扰性,长距离传输特性和多站能力等优点成为首选的串行接口。表现为: 接口信号电平比RS-232C低(±1.5V~±6V),不易损坏接口电路芯片,且该电平与TTL电平兼容,可方便与TTL 电路连接。 RS-485传输数据的速度较快,最高速率达到10Mbps 。 采用平衡驱动器和差分接收器的组合,抗共模干扰能力增强,即抗噪声干扰性能好。 最大传输距离标准值为4000英尺,折合1219米,实际上可达 3000米。 RS-485接口允许在总线上同时连接32个发送器和32个接收器,即具有多站能力,这样用户可以利用单一的RS-485接口方便地建立起设备网络。 因RS-485接口组成的半双工网络一般只需二根连线,所以RS-485接口均采用屏蔽双绞线传输。RS-485接口连接器采用DB9的9芯插头座。与智能终端RS-485接口采用DB9(孔);与键盘连接的键盘接口RS-485采用DB9(针)。
2、与其它标准接口的对照 表5-3 列出了RS-485与其它标准接口的对照表
5.4串行口应用与训练 5.4.1应用指导 1.串行通信中的常用波特率 80C51的四种工作方式中,方式0和方式2的波特率固定,见表5-1和方式0、方式2的特点。方式1和方式3的波特率可变,其具体数值由定时器T1的溢出率和SMOD位共同决定,公式见表5-1。 定时器T1作波特率发生器时,为了防止溢出中断,应保持T1为中断禁止状态。表5-4列出了T1的常用波特率。
2.利用串行口扩展I/O口 80C51单片机串行口方式0为同步移位寄存器方式,可进行8位并行I/O口的扩展。当串行口别无它用时,可通过使用串行输入并行输出移位寄存器(如74LS164)扩展并行输出口;或使用并行输入串行输出移位寄存器(如74LS165)扩展并行输入口。这种方法不占用片外RAM地址,而且还能简化单片机系统的硬件结构。但缺点是操作速度较慢,且扩展芯片越多,速度越慢。 图5-12是利用一片74LS165扩展8位并行输入口的实用电路。当移位/置入端S/由“1”变为“0”时,并行输入端的数据被置入寄存器。当S/=1,且时钟禁止端(15脚)接地时,在时钟脉冲的作用下,数据由QA向QH方向(即D7→D0)移动。
图5-12 利用一片74LS165扩展8位并行输入口电路 图中RXD(P3.0)作为80C51的串行输入端与74LS165的串行输出端相连,TXD(P3.1)为移位脉冲输出端,与74LS165芯片的移位脉冲输入端连接,用一根I/O口线P1.0与74LS165芯片的S/相连来控制移位与置位过程。 注:图中74LS165的SIN引脚为串行输入端,用于两片74LS165的串行扩展连接。
3.串行通信编程基础 (1)串行口初始化编程 串行口初始化应该包括对SCON、PCON和T1的初始化。对T1的初始化又包含TMOD寄存器初始化(将T1设置为波特率发生器)、根据波特率求时间常数并对TH1和TL1赋值、启动T1等过程,串口初始化格式如下,其中加括号的指令可根据情况选择使用: SIO:MOV SCON,#控制状态字 ;写方式字且TI=RI=0 (MOV PCON,#80H) ;波特率加倍 (MOV TMOD,#20H ) ;T1作波特率发生器 ( MOV TH1,#X ) ;选定波特率 ( MOV TH1,#X ) ( SETB TR1) ;启动T1 ( SETB EA) ;开串行口中断 ( SETB ES)
(2)发送程序 发送程序可以采用中断和查询两种方式设计。 查询方式: TRAM: MOV A,@R0 ;取数据 MOV SBUF,A ;发送一个字符 WAIT: JBC TI,NEXT ;等待发送结束 SJMP WAIT NEXT: INC R0 ;准备下一次发送 SJMP TRAM
中断方式: ORG 0023H ;串行口中断入口 AJMP SINT MAIN: … ;初始化编程 TRAM: MOV A,@R0 ;取数据 MOV SBUF,A ;发送第一个字符 SJMP $ ;其它工作 SINT:CLR TI ;中断服务程序 INC R0 MOV A,@R0 ;取数据 MOV SBUF,A ;发送下一个字符 RETI
(3)接收程序 与发送相类似,接收也可以采用中断和查询两种方式设计。 当REN=1、RI=0时80C51处于等待接收状态;一旦检测到RI=1,80C51开始从SBUF读取数据。 查询方式: WAIT: JBC RI,NEXT ;查询等待 SJMP WAIT NEXT: MOV A,SBUF ;读取接收数据 MOV @R0,A ;保存数据 INC R0 ;准备下一次接收 SJMP WAIT
5.4.2 基本训练 1.初始化训练 要求:某80C51单片机通信系统,晶振频率为12MHz,要求串行口发送8位数据,波特率1200bmp,请编写它的初始化程序。 思路与计算:要选择串行口和定时器T1的工作方式,计算时间常数并赋值给TH1、TL1。我们可以利用表5- 1中求波特率的公式:
初始化程序: MOV SCON,#40H ;串口工作于方式1 MOV PCON,#80H ;SMOD=1 MOV TMOD,#20H ;T1 作定时器,工作于方式2 MOV TH1,#0CCH ;装入时间常数初值 MOV TL1 ,#0CCH ;自动重装时间常数 CLR ET1 ;禁止T1中断 SETB TR1 ;启动T1波特率发生器 总结:用上述公式计算出的波特率不为整数,近似取整后,波特率也就不能精确地等于1200bps。但在异步传送中,每接收一个字符实际上都要整步一次,因此这点微小误差并不影响收发。
2.串行传送训练 要求:利用80C51的串行口实现一个数据块的发送。设发送数据区首地址为58H,数据块长度(字节数)为10,串行口工作于方式1,波特率1200bps,晶振频率为11.0592MHz。 思路:串行口工作于方式1时,波特率要编程设定。通常使T1工作在方式2,当波特率取1200bps时,可以查表或计算时间常数初值,得0E8H(SMOD=0时)。 发送子程序TRAM清单: TRAM:MOV TMOD,#20H ;T1工作在方式2 MOV TH1,#0E8H ;装入时间常数初值 MOV TL1,#0E8H ;自动重装时间常数
CLR ET1 ;禁止T1中断 SETB TR1 ;启动T1波特率发生器 MOV SCON,#40H ;串口工作于方式1 MOV PCON,#00H ;SMOD=0,该指令可不写 MOV R1,#58H ;数据发送区首址送R1 MOV R5,#10 ;发送长度送R5 LOOP:MOV A,@R1 ;发送一帧数据 MOV SBUF,A WAIT:JBC TI,NEXT ;发送等待,发完一帧转去NEXT SJMP WAIT NEXT:INC R1 ;准备取下一数据 DJNZ R5,LOOP ;数据块发完?未发完转LOOP RET ;发完,结束 <想一想> 发送等待时为什么不用“JB TI,NEXT”指令,而用“ JBC TI,NEXT”指令?
5.4.3 课题与实训10 串行输出控制彩灯 一.实训目的 1.熟悉74LS164的使用,掌握串行口的基本应用方法。 2.学习串行口的扩展技术,掌握串行口相关寄存器的设定方法。 3.掌握串行口扩展显示器的电路设计原理和编程方法 二.课题要求 利用一片AT89C51芯片,使之工作于方式0。在其串口扩展一片74LS164控制8个LED,要求使用建表方式,控制LED闪烁,其闪烁规律为:8个LED作左移2次,闪2次;右移2次,闪2次。闪烁间隔0.2秒。
三.背景知识 1.74LS164是串行输入并行输出移位寄存器,接在80C51的串行口,可以实现对8位并行数据的控制。 2.80C51与74LS164连接时,RXD(P3.0)作为串行输出与74LS164的数据输入端(1、2)相连,TXD(P3.1)作为移位脉冲输出与74LS164的时钟脉冲输入端(8)相连,74LS164的CLR端(9)通过电阻、电容接在电源和地上。
四.硬件电路 图5-13 串行输出控制彩灯硬件电路
五.软件设计(参考程序如下:) ORG 0000H AJMP MAIN ORG 0100H MAIN:MOV SCON,#00H;串口工作于方式0 START:MOV DPTR,#TABLE;指向TABLE表 LOOP:CLR A;清除A MOVC A,@A+DPTR;从TABLE表取数据 CJNE A,#05H,NEXT;取到结束码05H?没有跳到NEXT AJMP START;结束,重新开始 NEXT:CPL A;取到数据反相 MOV SBUF,A;向串口发送 LOOP1:JBC TI,LOOP2;发送结束?是,跳到LOOP2 AJMP LOOP1;没结束,再检测 LOOP2:ACALL DELAY;延时0.2秒 INC DPTR;指向下一地址 AJMP LOOP
DELAY:MOV R7,#4 ;延时0.2S D1: MOV R6,#20 D2: MOV R5,#123 NOP DJNZ R5,$ DJNZ R6,D2 DJNZ R7,D1 RET TABLE:DB 01H,02H,04H,08H DB 10H,20H,40H,80H DB 01H,02H,04H,08H DB 10H,20H,40H,80H DB 00H,0FFH,00H,0FFH DB 80H,40H,20H,10H DB 08H,04H,02H,01H DB 80H,40H,20H,10H DB 08H,04H,02H,01H DB 00H,0FFH,00H,0FFH DB 05H END 六.总结与思考 1.74LS164无输出控制端,故串行输入过程中,输出端会不断地变化。所以一般应在74LS164和输出装置之间加接输出控制门,以保证串行输入结束后再输出数据。 2.如果不用建表方式,如何实现?
5.5 单片机串行口应用举例 5.5.1 单片机与显示器的串行通信 例:某车间拟设置一块生产进度显示板,显示当天已完成的产品数量(不超过256),所需的产量数据,要从主单片机传送到显示板,请帮助设计相应的传送程序。 分析与设计 该任务中,每当生产线上完成一台合格产品时,通过自动计数装置向主单片机外部中断输入端送出一个低电平“0”,作为请求中断信号;主单片机响应中断后,在中断服务程序中,将产量值(存放在50H中)加1,并通过串口将其送给显示板。 显示版接收主单片机送来的显示数据。显示板的CPU平时运行显示程序,显示当前的产量(产量数据存放在数据存储区50H单元中)。只有当显示板的串口接收到主单片机发来的显示数据时,才会因串口中断,转去执行中断服务程序,以便将新接收到的产量数据存放到50H单元中,再返回到主程序执行显示程序。
软件设计 1.主单片机 ⑴主程序 发送端的主程序要完成外部中断和串行口的初始化工作,然后等待外部中断。 ORG 0000H AJMP MAIN ORG 0013H AJMP SUBG ;中断入口 ORG 0100H MAIN:MOV 50H,#00H ;当天产量从0开始 MOV SP,#60H SETB IT1;采用边沿触发方式 MOV SCON,#40H;串口工作于方式1,禁止接收 MOV PCON,#00H;波特率不加倍 MOV TMOD,#20H;T1工作于方式2
MOV TH1,#0E8H;波特率为1200bps MOV TL1,#0E8H SETB EX1;开中断 SETB EA;开中断 SETB TR1;打开波特率发生器 AJMP $;等待中断 ⑵中断服务子程序 当外部中断申请中断时,表示生产线上已完成一台成品,因此中断服务程序的任务就是将产量单元50H加1,并将加1后的数值从串口输出。程序如下: ORG 0200H SUBG:PUSH ACC INC 50H MOV A,50H MOV SBUF,A
WAIT:JBC TI,NEXT SJMP WAIT NEXT:POP ACC RETI 2.显示板的CPU ⑴主程序 主程序的初始化部分与发送端基本相同,只是要将SCON的禁止接收改成允许接收。并且要一边执行显示程序,一边等待中断。显示程序从略,可参看第6章。 ORG 0000H AJMP MAIN ORG 0023H AJMP SUBG ;串口中断入口 ORG 0100H MAIN:MOV 50H,#00H ;当天产量从0开始 MOV SP,#60H
MOV SCON,#50H;串口工作于方式1,允许接收 MOV PCON,#00H;波特率不加倍 MOV TMOD,#20H;T1工作于方式2 MOV TH1,#0E8H;波特率为1200bps MOV TL1,#0E8H SETB ES;开串口中断 SETB EA;开中断 SETB TR1;打开波特率发生器 WAIT:ACALL DISPLAY;转显示子程序 AJMP WAIT;等待中断