360 likes | 529 Views
Compilers and Software Security. Gaurav S. Kc gskc@cs.columbia.edu http://www.cs.columbia.edu/~gskc Programming Systems Lab. Tuesday, 22 nd April 2003. Outline. Security Runtime Management of Processes Vulnerabilities and Attack Techniques Compilers 4115 Security Research Conclusion.
E N D
Compilers and Software Security Gaurav S. Kcgskc@cs.columbia.edu http://www.cs.columbia.edu/~gskc Programming Systems Lab Tuesday, 22nd April 2003
Outline • Security • Runtime Management of Processes • Vulnerabilities and Attack Techniques • Compilers 4115 • Security Research • Conclusion
Security • What does security mean? • Focus: Security of resources • No unauthorised access (using Authentication) • Availability for authorised users (no DoS) • Also: Security of data during transit • Protection from eavesdropping • Protection from malformation • Solutions: PKI for encryption, digital signatures for non-repudiation
Security: Models & Threats • Social aspects of security failure • 3Bs: Burglary, Bribery, Brutality • Social Engineering • Threats to Security During Transit • Man-in-the-middle attack • Identity spoofing / Masquerading • Packet sniffing • Communication replay
Threats to Application Security • Trojan HorsesMalicious security breaking program disguised as something benign like a screen saver or game program • Keystroke loggers & powerful remote-control utility like Back Orifice • Abnormal system behaviour, e.g. open server socket, CTRL-ALT-DEL signal handler • Zombie nodes, awaiting instructions for conducting D.DoS • Computer VirusesExecutable code that, when run by someone, infects or attaches itself to other executable code in a computer in an effort to reproduce itself • Can be malicious, erase files, lock up systems • Boot Sector, File, Macro, Multipartite, Polymorphic, Stealth • Anti-virus: search for known signature in suspect files
Threats to Application Security 2 • Internet WormsA worm is a self-replicating program that does not alter files, but resides in active memory and duplicates itself by means of computer networks • Morris Worm (RTM) exploited fingerd, sendmail, weak passwords • Code Red exploited a (publicised) vulnerability in Microsoft IIS • Code Red II had a Trojan payload • Nimda: Swiss Army knife of worms – worm, virus, trojan!Spread via its own e-mail engine, IIS servers that it scanned, and shared disks on corporate networks. • Common Trait:Well-crafted input data can let you take control of a computer • WinNuke: for rebooting remote Win95 machine :)
Security • Runtime Management of Processes • Vulnerabilities and Attack Techniques • Compilers 4115 • Security Research • Conclusion
Program Stack Heap Process Runtime 0xffffffff kernel space 0xbfffffff env[] • x86 • 32-bit von Neumann machine • 232 ≈ 4GB memory locations • Breakdown of process space • stack • <= 0xbfffffff, Grows downwards • Environment variables, Program parameters • Automatically allocated stack variables • Activation records • heap • Dynamic allocation • Explicitly through malloc, free argv[] char *env[] char *argv[] int argc runtime stack runtime heap .bss .data int main(int argc, char *argv[], char *env[]) { return 0; } .text 0x08048000 0x00000000
Process Runtime 2 0xbfffffff env[] argv[] char *env[] char *argv[] int argc runtime stack runtime heap .bss .data .text 0xffffffff kernel space • .bss • assembler directive for IBM 704 assembler • runtime allocation of space • RWX • .data • compile-time space allocation,and initialisation values • RWX • .text • program code • runtime DLLs • RO, X • .rodata • RO, X • constants const int x = 4; “hello, world” Block Started by Segment // static & global uninitialised data Data Section // static & global initialised data Text Section // executable machine code 0x08048000 0x00000000
Activation Records • Subroutines • functions and procedures • abstraction of computation • structured programming concept • Stack frame, Function frame, Activation frame • Block of stack space reserved for duration of function • Logical stack frames are crucial for implementing subroutines • Each frame contains information related to the context of the given function. Grows downwards for each nested invocation. • Reserved registers • %eip (next instruction), %esp, %ebp (fixed offsets)
Activation Records 2 • Source function • Visualisation of the runtime stack frame 16(%ebp) void function(char *s, float y, int x) { int a; int b; char buffer[SIZE]; int c; strcpy(buffer, s); return; } #define SIZE 9 int main(void) { function(“yep”, 2.f, 93); return 0; } 12(%ebp) PC 8(%ebp) -12(%ebp) SP -16(%ebp) FP -40(%ebp) -44(%ebp)
s prologue function body buffer epilogue int x float y char *s Activation Records 3 function: pushl %ebp movl %esp, %ebp subl $56, %esp subl $8, %esp pushl 8(%ebp) leal -40(%ebp), %eax pushl %eax call strcpy addl $16, %esp leave ret .LC0: .string “yep” main: ... pushl $93 pushl $0x40000000 pushl $.LC0 call function ... • Source function • Assembly equivalent • Building the stack frame void function(char *s, float y, int x) { int a; int b; char buffer[SIZE]; int c; strcpy(buffer, s); return; } #define SIZE 9 int main(void) { function(“yep”, 2.f, 93); return 0; }
Security • Runtime Management of Processes • Vulnerabilities and Attack Techniques • Compilers 4115 • Security Research • Conclusion
Vulnerabilities • C: Low level, high level systems language • Efficient execution, Usable for real-time solutions • Pointers and Arrays • Pointer to (null-terminated?) block of memory • Lack of bounds checking • Buffer overflow causes havoc
Attack Techniques • Criteria for successful attack • Locate a buffer that has an unsafe operation applied to it • Well-crafted input data to trigger the overflow • Buffer overrun vulnerabilities • Stack-based: Stack-smashing attack • Heap-based: Function pointers, C++ virtual pointers, Exception handlers (CodeRed) • FormatString exploits • %n format converter for *printf family of functions • writes #bytes output so far to %n argument (int *) printf(“\x70\xf7\xff\xbf%%n”); //0xbffff770 := 4
To overflow (automatic) stack buffer, one would need: Shellcode, i.e. characters representing machine code (obtain from gdb, as) Memory location of injected shellcode (typically buffer address) Can approximate to make up for lack of precise information nop instructions at the beginning of the shellcode overwrite locations around 0(%ebp)with shellcode address suid installed programs. Shellcode: shell, export xterm display 0xBadAdda0 ... ... ... (“/bin/sh”) exec Stacksmashing attack • Buffer overrun • Code injection • Return address overwritten Smashing the Stack void function(char *s, float y, int x) { int a; int b; char buffer[SIZE]; int c; ... ; strcpy(buffer, s); ... } int x float y char *s PC ret. addr: 0x0abcdef0 old fp: 0x4fedcba8 int a int b char buffer[SIZE] int c
Function pointer Higher address: function pointer Lower address: buffer C++ Pointer to vtable Higher address: virtual pointer Lower address: buffer int (* f) (void) void *vptr char buffer[ ]; char buffer[ ]; .bss C++ object Heap-Based Attacks class ABC { char buffer[10]; virtual void print() { cout << buffer; } void set(char *s) { strcpy(buffer, s); } }; int main(int argc, char *argv[]) { static char buffer[10]; static int (*f)(void) = exit; // gets(buffer); strcpy(buffer, argv[1]); (*f)(); ABC *abc = new ABC(); abc->set(argv[1]); abc->print(); }
Security • Runtime Management of Processes • Vulnerabilities and Attack Techniques • Compilers 4115 • Security Research • Conclusion
Compilers 4115 • GCC: GNU Compiler Collection • Just a wrapper for different phases • cpp: C preprocessor program.c program.i • cc1: C compiler proper program.i program.s • as: Assembler (a.out, ELF relocatable files) program.s program.o • ld: Link editor (ELF executables) program.o program
GCC • Command line options gcc –save-temps (-pipe) –Wall –O0 –dr –v –static-I$HOME/include –L$HOME/lib-lsocket –lm -lpthread • Standard libraries /lib/libc.so.6, /lib/ld-linux.so.2 • Standard library header files /usr/include
Other tools • GNU Debugger: gdb • GNU Binutils • objcopy: add/remove ELF sections • readelf,objdump: print ELF information • Miscellaneous • ldd: list dynamic dependencies (DLLs) • strace: trace syscall invocations
Security • Runtime Management of Processes • Vulnerabilities and Attack Techniques • Compilers 4115 • Security Research • Conclusion
Security Research • Know thy enemy • Monitor the attacker’s behaviour and tactics • In a constrained resource environment • Honeypots • Illusion of an “easy target” to lure attackers • Jail • Sandboxed environment using chroot • All necessary files are available locally • Virtual machines • Sandboxes with limited syscalls
Automatic Defence Mechanisms • Face thy enemy • Applications fortified with runtime checks • Stackguard, Memguard, .NET cl.exe /gs • “canary” word to detect Stack-smashing • READONLY stack frame • .NET C/C++ compiler protects 0(%ebp),4(%ebp) • Libsafe, Libverify • “safe” implementation of standard libraries • runtime backup/checking of return address
Defence through Diversity • Code Diversity • Code randomisation for diversity • Security through obscurity even for open-source software • No more: breach once, breach everywhere • Compiler-based Protection • Secure the stack data • Potentially vulnerable heap data
Casper • Paper: Casper: Compiler-assisted securing of programs at runtime • Via added runtime checks as part of function invocations • Add protection code • Protect what: control data in stack frames • What from: most stack-smashing attacks • Available as patches: • Compiler: gcc-2.95 • Debugger: gdb-5.2.1
Similar in nature to Stackguard, but with much smaller overhead XOR property: idempotent when applied twice. Simplest form of encryption / obfuscation of data Casper in Action int x float y PC char *s Casper protection • Mask original return address value when entering function • Unmask and restore the original return address value when returning from function • Overwritten value will be “restored” to invalid code address ret. addr := 32-bit XOR ret. addr ret. addr: 0x0abcdef0 old fp: 0x4fedcba8 int a int b char buffer[SIZE] int c
Get the Processor Involved • Paper: Countering Code-Injection Attacks With Instruction-Set Randomization • Machine instruction translation – unique per process • Reversible mapping • machine instruction ↔ garbage bit sequence • Post-compilation stage • Encode all executable sections with key • Store codec key in file header • Modified von Neumann: fetch, decrypt, decode, execute • decrypt: “Processor” restores each block of bytes to valid, original instruction • Injected code gets probabilistically transformed to garbage bit-sequence that cannot be decoded
compile MACHINE EXECUTABLE FILE key ENCRYPTED EXECUTABLEFILE fetch encrypt via objcopy key decrypt Binary Encryption and Execution SOURCE CODE
Binary Encryption and Execution 2 • Bochs Pentium emulator is the “modified machine” • Support for hidden register %gav • Interrupt routine handler saves %gav to process structure • Linux 2.2.14 • Kernel recognises new register • Support for register in process structure • as and objcopy for program encryption and codec storage code
Future Work • Randomised ISA on real machine • Programmable Transmeta chips • Dynamo: Dynamic optimiser of native code • Activation records • automatically managed, randomised layout • Heap smashing techniques • break type-system • corrupt malloc data, Diversified research • Languages, Compilers: C++, Sun CC, Visual C++ • Other architectures: Solaris, Alpha (DLX ;-)
Conclusion • Security • Process Security • Runtime Management of Processes • Stack, Heap, Activation Records • Vulnerabilities and Attack Techniques • Buffer overrun. Stacksmashing. Pointer overwriting. • Compilers 4115 • GCC, GDB, Binutils • Security Research • Monitoring. Runtime protection
References • The Bochs Pentium emulatorhttp://bochs.sourceforge.net/ • Aleph One. Smashing The Stack For Fun And Profithttp://www.phrack.org/show.php?p=49&a=14 • Arash Baratloo, N. Singh, T. TsaiTransparent Run-Time Defense Against Stack Smashing Attacks • Crispin Cowan, M. Barringer, et al.FormatGuard: Automatic Protection From printf format string vulnerabilities • Crispin Cowan, Calton Pu, et al.StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks • Gaurav S. Kc, Stephen A. Edwards, Gail E. Kaiser, Angelos KeromytisCasper: Compiler-assisted securing of programs at runtime • Gaurav S. Kc, Angelos D. Keromytis, Vassilis PrevelakisCountering Code-Injection Attacks With Instruction-Set Randomization
int factorial(int n) { if (1 >= n) return 1; return n*factorial(n-1); } int val = factorial(x); int factorial(int n, int v) { if (1 >= n) return v; return factorial(n-1, v*n); } int val = factorial(x, 1); Optimisation of Tail-Recursion C source code Assembly factorial: ... pushl n-1 call factorial ... factorial: ... n := n-1 v := v*n goto factorial back
x86 Processor • Dual integer pipeline • Hidden register %eip does not always fetch the “next” instruction back
if [ ! $1 ] ; then echo "usage: $0 <ELF_executable_image> [key]"; exit; fi if [ ! $2 ] ; then XOR_KEY="0x$RANDOM"; else XOR_KEY=$2; fi # file names NEW_FILE="$1.$XOR_KEY" ORG_FILE=$1 INTERMEDIATE="$XOR_KEY.o" # modified binary OBJCOPY=/home/gskc/usr/binutils-2.13.2/bin/objcopy # create an intermediate ELF object file with an .xor.stuff section as -o $INTERMEDIATE <<EOF .section .xor.stuff .long $XOR_KEY EOF # merge the .xor.stuff section into the specified file $OBJCOPY --encrypt-xor-key $XOR_KEY --add-section .xor.stuff=$INTERMEDIATE $ORG_FILE $NEW_FILE # clean up rm -f $INTERMEDIATE Binary Encryption Code: GNU as back