1 / 21

Game Theory and its Applications

Game Theory and its Applications Sarani SahaBhattacharya, HSS Arnab Bhattacharya, CSE 07 Jan, 2009 Prisoner’s Dilemma Two suspects arrested for a crime Prisoners decide whether to confess or not to confess If both confess, both sentenced to 3 months of jail

oshin
Download Presentation

Game Theory and its Applications

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Game Theory and its Applications Sarani SahaBhattacharya, HSS Arnab Bhattacharya, CSE 07 Jan, 2009

  2. Prisoner’s Dilemma • Two suspects arrested for a crime • Prisoners decide whether to confess or not to confess • If both confess, both sentenced to 3 months of jail • If both do not confess, then both will be sentenced to 1 month of jail • If one confesses and the other does not, then the confessor gets freed (0 months of jail) and the non-confessor sentenced to 9 months of jail • What should each prisoner do? Game Theory

  3. Battle of Sexes • A couple deciding how to spend the evening • Wife would like to go for a movie • Husband would like to go for a cricket match • Both however want to spend the time together • Scope for strategic interaction Game Theory

  4. Games • Normal Form representation – Payoff Matrix Prisoner 2 Prisoner 1 Husband Wife Game Theory

  5. Nash equilibrium • Each player’s predicted strategy is the best response to the predicted strategies of other players • No incentive to deviate unilaterally • Strategically stable or self-enforcing Prisoner 2 Prisoner 1 Game Theory

  6. Mixed strategies • A probability distribution over the pure strategies of the game • Rock-paper-scissors game • Each player simultaneously forms his or her hand into the shape of either a rock, a piece of paper, or a pair of scissors • Rule: rock beats (breaks) scissors, scissors beats (cuts) paper, and paper beats (covers) rock • No pure strategy Nash equilibrium • One mixed strategy Nash equilibrium – each player plays rock, paper and scissors each with 1/3 probability Game Theory

  7. Nash’s Theorem • Existence • Any finite game will have at least one Nash equilibrium possibly involving mixed strategies • Finding a Nash equilibrium is not easy • Not efficient from an algorithmic point of view Game Theory

  8. Dynamic games • Sequential moves • One player moves • Second player observes and then moves • Examples • Industrial Organization – a new entering firm in the market versus an incumbent firm; a leader-follower game in quantity competition • Sequential bargaining game - two players bargain over the division of a pie of size 1 ; the players alternate in making offers • Game Tree Game Theory

  9. Game tree example: Bargaining Period 2:B offers x2. A responds. (x1,1-x1) (x3,1-x3) 1 1 1 Y Y x3 x1 N (0,0) B B N x2 A B A A N Y 0 0 0 Period 1:A offers x1. B responds. Period 3:A offers x3. B responds. (x2,1-x2)

  10. Economic applications of game theory • The study of oligopolies (industries containing only a few firms) • The study of cartels, e.g., OPEC • The study of externalities, e.g., using a common resource such as a fishery • The study of military strategies • The study of international negotiations • Bargaining

  11. Auctions • Games of incomplete information • First Price Sealed Bid Auction • Buyers simultaneously submit their bids • Buyers’ valuations of the good unknown to each other • Highest Bidder wins and gets the good at the amount he bid • Nash Equilibrium: Each person would bid less than what the good is worth to you • Second Price Sealed Bid Auction • Same rules • Exception – Winner pays the second highest bid and gets the good • Nash equilibrium: Each person exactly bids the good’s valuation Game Theory

  12. Second-price auction • Suppose you value an item at 100 • You should bid 100 for the item • If you bid 90 • Someone bids more than 100: you lose anyway • Someone bids less than 90: you win anyway and pay second-price • Someone bids 95: you lose; you could have won by paying 95 • If you bid 110 • Someone bids more than 11o: you lose anyway • Someone bids less than 100: you win anyway and pay second-price • Someone bids 105: you win; but you pay 105, i.e., 5 more than what you value Game Theory

  13. Mechanism design • How to set up a game to achieve a certain outcome? • Structure of the game • Payoffs • Players may have private information • Example • To design an efficient trade, i.e., an item is sold only when buyer values it as least as seller • Second-price (or second-bid) auction • Arrow’s impossibility theorem • No social choice mechanism is desirable • Akin to algorithms in computer science Game Theory

  14. Inefficiency of Nash equilibrium • Can we quantify the inefficiency? • Does restriction of player behaviors help? • Distributed systems • Does centralized servers help much? • Price of anarchy • Ratio of payoff of optimal outcome to that of worst possible Nash equilibrium • In the Prisoner’s Dilemma example, it is 3 Game Theory

  15. Network example • Simple network from s to t with two links • Delay (or cost) of transmission is C(x) • Total amount of data to be transmitted is 1 • Optimal: ½ is sent through lower link • Total cost = 3/4 • Game theory solution (selfish routing) • Each bit will be transmitted using the lower link • Not optimal: total cost = 1 • Price of anarchy is, therefore, 4/3 C(x) = 1 s t C(x) = x Game Theory

  16. Do high-speed links always help? • ½ of the data will take route s-u-t, and ½ s-v-t • Total delay is 3/2 • Add another zero-delay link from u to v • All data will now switch to s-u-v-t route • Total delay now becomes 2 • Adding the link actually makes situation worse u u C(x) = x C(x) = x C(x) = 1 C(x) = 1 C(x) = 0 s t s t C(x) = 1 C(x) = 1 C(x) = x C(x) = x v v Game Theory

  17. Other computer science applications • Internet • Routing • Job scheduling • Competition in client-server systems • Peer-to-peer systems • Cryptology • Network security • Sensor networks • Game programming Game Theory

  18. Bidding up to 50 • Two-person game • Start with a number from 1-4 • You can add 1-4 to your opponent’s number and bid that • The first person to bid 50 (or more) wins • Example • 3, 5, 8, 12, 15, 19, 22, 25, 27, 30, 33, 34, 38, 40, 41, 43, 46, 50 • Game theory tells us that person 2 always has a winning strategy • Bid 5, 10, 15, …, 50 • Easy to train a computer to win Game Theory

  19. Game programming • Counting game does not depend on opponent’s choice • Tic-tac-toe, chess, etc. depend on opponent’s moves • You want a move that has the best chance of winning • However, chances of winning depend on opponent’s subsequent moves • You choose a move where the worst-case winning chance (opponent’s best play) is the best: “max-min” • Minmax principle says that this strategy is equal to opponent’s min-max strategy • The worse your opponent’s best move is, the better is your move Game Theory

  20. Chess programming • How to find the max-min move? • Evaluate all possible scenarios • For chess, number of such possibilities is enormous • Beyond the reach of computers • How to even systematically track all such moves? • Game tree • How to evaluate a move? • Are two pawns better than a knight? • Heuristics • Approximate but reasonable answers • Too much deep analysis may lead to defeat Game Theory

  21. Conclusions • Mimics most real-life situations well • Solving may not be efficient • Applications are in almost all fields • Big assumption: players being rational • Can you think of “unrational” game theory? • Thank you! • Discussion Game Theory

More Related