1 / 69

Omer Angel

Random Sorting Networks. Omer Angel. Alexander Holroyd. Dan Romik. Balint Virag. math.PR/0609538. Adv. in Math. 2007. Thanks to: Nathanael Berestycki, Alex Gamburd, Alan Hammond, Pawel Hitczenko, Martin Kassabov, Rick Kenyon, Scott Sheffield, David Wilson, Doron Zeilberger. 1 2 3

oshin
Download Presentation

Omer Angel

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Random Sorting Networks Omer Angel Alexander Holroyd Dan Romik BalintVirag math.PR/0609538 Adv. in Math. 2007 Thanks to: Nathanael Berestycki, Alex Gamburd, Alan Hammond, Pawel Hitczenko, Martin Kassabov, Rick Kenyon, Scott Sheffield, David Wilson, Doron Zeilberger

  2. 1 2 3 4

  3. 4 3 2 1 1 2 3 4

  4. 2 1 3 4 4 3 2 1 1 2 3 4

  5. 2 1 3 4 2 3 1 4 4 3 2 1 1 2 3 4

  6. 2 1 3 4 2 3 1 4 2 3 4 1 4 3 2 1 1 2 3 4

  7. 2 1 3 4 2 3 1 4 2 3 4 1 3 2 4 1 4 3 2 1 1 2 3 4

  8. 2 1 3 4 2 3 1 4 2 3 4 1 3 2 4 1 3 4 2 1 4 3 2 1 1 2 3 4

  9. 2 1 3 4 2 3 1 4 2 3 4 1 3 2 4 1 3 4 2 1 4 3 2 1 1 2 3 4

  10. 2 1 3 4 2 3 1 4 2 3 4 1 3 2 4 1 3 4 2 1 4 3 2 1 1 2 3 4 To get from 1Ln to nL1 requires N:= nearest-neighbour swaps

  11. E.g. n=4: 2 1 3 4 2 3 1 4 2 3 4 1 3 2 4 1 3 4 2 1 4 3 2 1 1 2 3 4 A Sorting Network = any route from 1Ln to nL1 in exactly N:= nearest-neighbour swaps

  12. Theorem (Stanley 1984). # of n-particle sorting networks = Uniform Sorting Network (USN): choose an n-particle sorting network uniformly at random. E.g. n=3:

  13. 2 1 3 4 2 3 1 4 2 3 4 1 3 2 4 1 3 4 2 1 4 3 2 1 1 2 3 4

  14. swap locations 2 1 3 4 2 3 1 4 2 3 4 1 3 2 4 1 3 4 2 1 4 3 2 1 1 2 3 4

  15. swap locations 2 1 3 4 2 3 1 4 2 3 4 1 3 2 4 1 3 4 2 1 4 3 2 1 1 2 3 4 particle trajectory

  16. 2 3 4 1 swap locations 2 1 3 4 2 3 1 4 2 3 4 1 3 2 4 1 3 4 2 1 4 3 2 1 1 2 3 4 particle trajectory permutation matrix (at half-time) 1 2 3 4 9 efficient simulation algorithm for USN...

  17. Swap locations, n=100

  18. Swap locations, n=2000

  19. swap locations 2 1 3 4 2 3 1 4 2 3 4 1 3 2 4 1 3 4 2 1 4 3 2 1 1 2 3 4 s1 = 1 s2 = 2 s3 = 3 s4 = 1 s5 = 2 s6 = 1

  20. Theorem:For USN: 1. Sequence of swap locations (s1,...,sN) is stationary 2. Scaled first swap location 3. Scaled swap process 8 n as n!1 as n!1 (Note: not true for all sorting networks, e.g. bubble sort)

  21. In progress: Process of first k swaps in positions cn...cn+k ! random limit as n!1 not depending on c2(0,1)

  22. Proof of stationarity: 2 1 3 4 2 3 1 4 2 3 4 1 3 2 4 1 3 4 2 1 4 3 2 1 1 2 3 4

  23. Proof of stationarity: 2 1 3 4 2 3 1 4 2 3 4 1 3 2 4 1 3 4 2 1 4 3 2 1

  24. Proof of stationarity: 1 2 3 4 1 3 2 4 1 3 4 2 3 1 4 2 3 4 1 2 4 3 1 2

  25. Proof of stationarity: 1 2 3 4 1 3 2 4 1 3 4 2 3 1 4 2 3 4 1 2 4 3 1 2

  26. Proof of stationarity: 1 2 3 4 1 3 2 4 1 3 4 2 3 1 4 2 3 4 1 2 4 3 1 2 4 3 2 1

  27. So for USN: Proof of stationarity: 1 2 3 4 1 3 2 4 1 3 4 2 3 1 4 2 3 4 1 2 4 3 1 2 4 3 2 1 (s1,...,sN) a (s2,...,sN,n-s1) is a bijection from {sorting networks} to itself.

  28. Selected trajectories, n=2000

  29. Scaled trajectory of particle i: Ti:[0,1]![-1,1] 1 i -1 1 0

  30. Conjecture: trajectories ! random Sine curves: as n!1 (random) Theorem: scaled trajectories have subsequential limits which are a.s. Hölder(½). as n!1

  31. Half-time permutation matrix, n=2000 animation

  32. projection of surface measure on S2½R3 to R2 (unique circularly symmetric measure with uniform linear projections; on x2+y2<1 ) scaled permutation matrix at time tN Arch. meas. Conjecture: scaled permutation matrix at time N/2 Archimedes measure

  33. (1-½p3-e)n Theorem: scaled permutation matrix at time tN is supported within a certain octagon w.h.p. as n!1

  34. Some Proofs: • Key tools: • Bijection (Edelman-Greene 1987) • {sorting networks} $ {standard staircase • Young tableaux} • New result for • profile of random staircase Young tableau • (deduced from Pittel-Romik 2006)

  35. Staircase Young diagram: (E.g. n=5) n-1 N cells

  36. Standard staircase Young tableau: 1 2 4 8 3 5 6 7 10 9 Fill with 1,L,N so each row/col increasing

  37. Edelman-Greene algorithm: 1 2 4 8 3 5 6 7 10 9 1. Remove largest entry

  38. Edelman-Greene algorithm: 1 2 4 8 3 5 6 7 9 1. Remove largest entry

  39. Edelman-Greene algorithm: 1 2 4 8 3 5 6 7 9 2. Replace with larger of neighbours "Ã

  40. Edelman-Greene algorithm: 1 2 4 8 3 5 6 7 9 2. Replace with larger of neighbours "Ã

  41. Edelman-Greene algorithm: 1 2 4 8 5 6 3 7 9 2. Replace with larger of neighbours "Ã ...repeat

  42. Edelman-Greene algorithm: 2 4 8 1 5 6 3 7 9 2. Replace with larger of neighbours "Ã ...repeat

  43. Edelman-Greene algorithm: 0 2 4 8 1 5 6 3 7 9 3. Add 0 in top corner

  44. Edelman-Greene algorithm: 1 3 5 9 2 6 7 4 8 10 4. Increment

  45. Edelman-Greene algorithm: 1 3 5 9 2 6 7 4 8 5. Repeat everything...

  46. Edelman-Greene algorithm: 1 3 5 9 2 6 7 8 4 5. Repeat everything...

  47. Edelman-Greene algorithm: 1 3 5 9 6 7 2 8 4 5. Repeat everything...

  48. Edelman-Greene algorithm: 3 5 9 6 7 1 2 8 4 5. Repeat everything...

  49. Edelman-Greene algorithm: 0 3 5 9 6 7 1 2 8 4 5. Repeat everything...

  50. Edelman-Greene algorithm: 1 4 6 10 7 8 2 3 9 5 5. Repeat everything...

More Related