430 likes | 549 Views
相対論的流体模型を軸にした 重イオン衝突の理解. Kobayashi- Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA. June 23, 2013@Matsumoto 「 RHIC-LHC 高エネルギー原子核反応の物理研究会」 ----- QGP の物理研究会 信州合宿 -----. Hydrodynamic Model. hydro. hadronization. freezeout. collisions. thermalization.
E N D
相対論的流体模型を軸にした重イオン衝突の理解相対論的流体模型を軸にした重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「RHIC-LHC 高エネルギー原子核反応の物理研究会」 ----- QGPの物理研究会 信州合宿 -----
Hydrodynamic Model hydro hadronization freezeout collisions thermalization observables strong elliptic flow @RHIC hydrodynamic model One of successful models for description of dynamics of QGP:
z Reaction plane y x Viscosity in Hydrodynamics Elliptic Flow RHIC Au+AuGeV Song et al, PRL106,192301(2011) 0.08 < h/s < 0.24 Elliptic Flow
Ridge Structure Long correlation in longitudinal direction 1+1 d viscous hydrodynamics
Perturvative calculation Fukuda
Perturbative Solution Fukuda F(1)の解:グリーン関数で構成される
Results Fukuda
z Reaction plane y x Viscosity in Hydrodynamics Elliptic Flow RHIC Au+AuGeV Song et al, PRL106,192301(2011) 0.08 < h/s < 0.24 Elliptic Flow
Higher Harmonics Mach-Cone-Like structure, Ridge structure Challenge to relativistic hydrodynamic model Viscosity effect from initial en to final vn Longitudinal structure (3+1) dimensional Higher harmonics high accuracy calculations • State-of-the-art numerical algorithm • Shock-wave treatment • Less numerical dissipation Higher harmonics and Ridge structure
Hydrodynamic Model hydro hadronization freezeout collisions thermalization observables higher harmonics strong elliptic flow @RHIC particle yields: PT distribution model fluctuating initial conditions hydrodynamic model final state interactions: hadron base event generators Viscosity, Shock wave One of successful models for description of dynamics of QGP:
Current Status of Hydro Ideal
Viscous Hydrodynamic Model • Relativistic viscous hydrodynamic equation • First order in gradient: acausality • Second order in gradient: • Israel-Stewart • Ottinger and Grmela • AdS/CFT • Grad’s 14-momentum expansion • Renomarization group • Numerical scheme • Shock-wave capturing schemes • Less numerical dissipation
Numerical Scheme • Lessons from wave equation • First order accuracy: large dissipation • Second order accuracy : numerical oscillation -> artificial viscosity, flux limiter • Hydrodynamic equation • Shock-wave capturing schemes: Riemann problem • Godunov scheme: analytical solution of Riemann problem, Our scheme • SHASTA: the first version of Flux Corrected Transport algorithm, Song, Heinz, Chaudhuri • Kurganov-Tadmor (KT) scheme, McGill
(COGNAC) Our Approach Takamoto and Inutsuka, arXiv:1106.1732 Akamatsu, Inutsuka, C.N., Takamoto,arXiv:1302.1665 • (ideal hydro) • 1. dissipative fluid dynamics = advection + dissipation exact solution for Riemann problem • Riemann solver: Godunov method Contact discontinuity Rarefaction wave t tt Shock wave Two shock approximation Mignone, Plewa and Bodo, Astrophys. J. S160, 199 (2005) Rarefaction wave shock wave • 2. relaxation equation = advection + stiff equation Israel-Stewart Theory
Riemann Problem Riemann problem Energy distribution shock wave: discontinuity surface Discretization
Riemann Problem Riemann problem Energy distribution example shock wave: discontinuity surface shock wave Initial Condition Discretization
Riemann Problem Riemann problem Energy distribution example shock wave: discontinuity surface Initial Condition Discretization
Riemann Problem Riemann problem Energy distribution example shock wave: discontinuity surface Initial Condition Discretization
Riemann Problem Riemann problem Energy distribution example shock wave: discontinuity surface shock wave rarefaction wave contact discontinuity shock wave Discretization
COGNAC COGite Numerical Analysis of heavy-ion Collisions Takamoto and Inutsuka, arXiv:1106.1732 Akamatsu, Inutsuka, C.N., Takamoto,arXiv:1302.1665 • (ideal hydro) • 1. dissipative fluid dynamics = advection + dissipation exact solution for Riemann problem • Riemann solver: Godunov method Contact discontinuity Rarefaction wave t tt Shock wave Two shock approximation Mignone, Plewa and Bodo, Astrophys. J. S160, 199 (2005) Rarefaction wave shock wave • 2. relaxation equation = advection + stiff equation Israel-Stewart Theory
Numerical Scheme Takamoto and Inutsuka, arXiv:1106.1732 1. Dissipative fluid equation 2. Relaxation equation + stiff equation advection I: second order terms Israel-Stewart Theory
Relaxation Equation Takamoto and Inutsuka, arXiv:1106.1732 + stiff equation advection • during Dt up wind method ~constant Piecewise exact solution fast numerical scheme Numerical scheme
Comparison • Analytical solution • Numerical schemes • SHASTA, KT, NT • Our scheme T=0.4 GeV v=0 EoS: ideal gas T=0.2 GeV v=0 10 0 Nx=100, dx=0.1 Shock Tube Test : Molnar, Niemi, Rischke, Eur.Phys.J.C65,615(2010)
Energy Density t=4.0 fm dt=0.04, 100 steps COGNAC analytic
Velocity t=4.0 fm dt=0.04, 100 steps COGNAC analytic
q t=4.0 fm dt=0.04, 100 steps COGNAC COGNAC analytic
Artificial and Physical Viscosities Molnar, Niemi, Rischke, Eur.Phys.J.C65,615(2010) Antidiffusionterms : artificial viscosity stability
Numerical Dissipation p fm-4 If numerical dissipationdoes not exist Cs0:sound velocity dp=0.1 fm-4 After one cycle: t=l/cs0 1000 Vs(x,t)=Vinit(x-cs0t) With finite numerical dissipation Vs(x,t)≠Vinit(x-cs0t) 0 2 -2 l=2 fm fm periodic boundary condition L1 norm after one cycle Sound wave propagation
Convergence Speed Space and time discretization Second order accuracy
Numerical Dissipation • numerical dissipation: • from fit of calculated data 1 1000
hnumvs Grid Size Numerical dissipation: Deviation from linear analyses (Llin) Ex. Heavy Ion Collisions l ~ 10 fm 0.1<h/s<1 Fluctuating initial condition T=500 MeV l ~ 1 fm Dx << 0.25 – 0.82 fm Dx << 0.8 – 2.6 fm
Viscosity in Hydrodynamics Elliptic Flow RHIC Au+AuGeV Song et al, PRL106,192301(2011) physical viscosity = input of hydro 0.08 < h/s < 0.24
Viscosity in Hydrodynamics Elliptic Flow RHIC Au+AuGeV Song et al, PRL106,192301(2011) With finite numerical dissipation 0.08 < h/s < 0.24 ? physical viscosity ≠ input of hydro physical viscosity = input of hydro + numerical dissipation Checking grid size dependence is important.
To Multi Dimension Operational split (C, S) Operational split and directional split
To Multi Dimension Operational split (C, S) 2d 3d Li : operation in i direction Operational split and directional split
Blast Wave Problems Velocity: |v|=0.9 Pressure distribution (0.2*vx, 0.2*vy) fm-4 1 Initial conditions
Higher Harmonics smoothed fluctuating • Initial conditions • Gluaber model
Higher Harmonics smoothed fluctuating t=10 fm t=10 fm • Initial conditions at mid rapidity • Gluaber model
14 Viscosity Effect fm-4 initial Pressure distribution t~10 fm t~15 fm t~5 fm 1 Ideal 1 7 Viscosity 0.9 7 0.25
fm-4 Viscous Effect 20 initial Pressure distribution t~10 fm t~15 fm t~5 fm Ideal fm-4 0.25 1.2 9 Viscosity 0.3 1.2 9
Summary COGNAC with Duke and Texas A&M • We develop a state-of-the-art numerical scheme, COGNAC • Viscosity effect • Shock wave capturing scheme: Godunov method • Less numerical dissipation: crucial for viscosity analyses • Fast numerical scheme • Numerical dissipation • How to evaluate numerical dissipation • Physical viscosity grid size • Work in progress • Analyses of high energy heavy ion collisions • Realistic Initial Conditions + COGNAC + UrQMD