1 / 11

Observable Signatures of the Accretion-Induced Collapse of White Dwarfs

Observable Signatures of the Accretion-Induced Collapse of White Dwarfs. Brian Metzger, UC Berkeley. w/ Tony Piro, Eliot Quataert, Niccolo Bucciantini (Berkeley) & Todd Thompson (Ohio State). OUTLINE. WD. Thermal Optical Transients (Metzger, Piro & Quataert 2008,09)

osmond
Download Presentation

Observable Signatures of the Accretion-Induced Collapse of White Dwarfs

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Observable Signatures of the Accretion-Induced Collapse of White Dwarfs Brian Metzger, UC Berkeley w/ Tony Piro, Eliot Quataert, Niccolo Bucciantini (Berkeley) & Todd Thompson (Ohio State) OUTLINE WD Thermal Optical Transients (Metzger, Piro & Quataert 2008,09) 2) Connection to Short GRBs (Metzger, Quataert & Thompson 2008) NS

  2. Accretion-Induced Collapse (AIC) e.g. Miyaji+80, Nomoto & Kondo 91; Canal+92; Gutierrez+05 • “Failed” Thermonuclear Explosion (otherwise Type Ia SN) • Paths to AIC: T = 0.21 min • Non-Degenerate Binary Accretion:electron captures faster than nuclear burning(e.g. O-Ne WDs) 2) Double White Dwarf Merger:  Super-Chandrasekhar WD + Remnant Torus(Candidates: SPY Survey; Napiwotzki+02) Yoon+07 T = 1.7 min T = 0.86 min • AIC Rate (Very Uncertain): ~10-6-10-4 yr-1 galaxy-1

  3. Collapse to a Proto-Neutron Star • Weak Explosion ~1050 ergs, MNi < 10-3 M (Woosley & Baron 92; Fryer+99; Dessart+06) • But with Rapid Rotation…. • Gravitational Wave Source? (Fryer+02; Ott 08) 2) ~ 0.1 M, ~ 30 km Disk around NS (Michel 87; Bailyn & Grindlay 90) WD R ~ 103 km Collapse! T = 59 ms post bounce  Dessart+06 R ~ 30-100 km NS

  4. Metzger, Piro, & Quataert 2008a,b Disk Accretion and Viscous Spreading • 1D (radial) Time-Dependent Disk Evolution  Solve for Disk Spreading (alpha viscosity), Heating & Cooling  Evolve Composition (n/p) via Weak Interactions • Neutrino Cooled (Thin Disk) • Degenerate Electrons  Neutron-Rich Equilibrium Initial (t = 0) R ~ 100 km M ~ 0.1 M NS T ~ 5 MeV }

  5. Metzger, Piro, & Quataert 2008a,b Disk Accretion and Viscous Spreading • 1D (radial) Time-Dependent Disk Evolution  Solve for Disk Spreading (alpha viscosity), Heating & Cooling  Evolve Composition (n/p) via Weak Interactions • Neutrino Cooled (Thin Disk) • Degenerate Electrons  Neutron-Rich Equilibrium Initial (t = 0) R ~ 100 km M ~ 0.1 M NS T ~ 5 MeV } Final (t ~ 1 s) R ~ 1000 km • Inefficient Cooling (Thick Disk) • Degeneracy Lifted • n/p “Freezes Out” • Alpha Particles Form • Disk Blown Apart M ~ 0.03 M NS T ~ 1 MeV

  6. Disk Outflows and Nucleosynthesis }  Powerful Winds • -Particle Formation: ENuc > EBind • Thick Disks only Marginally Bound (Narayan & Yi 94; Blandford & Begelman 99) • Expansion of Hot, Dense Ejecta Heavy Element Synthesis • Critical Quantity:Neutron-Proton Ratio in Disk @ Freeze Out e.g. Se, Br, Ag e.g. Se, Br, Ag Neutron-Rich Freeze Out (with n/p ~ 2-3)  Rare Heavy Elements 1) BH Accretion(NS-NS / NS-BH Mergers) BH (Metzger, Piro, & Quataert 08a,b) e e e V ~ 0.1 c 56Ni Neutrino Irradiation 2) NS Accretion(AIC) NS  n/p ~ 1  56Ni e V ~ 0.1 c 56Ni e e

  7. Optical Transients from AIC Metzger, Piro, & Quataert 2009 • 56Ni  56Co +  heats ejecta • Photons diffuse out as ejecta expands MNi ~ 10-2 M Mtotal ~ 2 x 10-2 M 1) Optical Transient Surveys Palomar Transient Factory & PanSTARRs MDS: ~1 yr-1 (RAIC/10-2 RIa) LSST: ~ 600 yr-1 (RAIC/10-2 RIa) Ni / Fe-Rich Spectra Larger Mtotal in WD-WD Merger  Longer Duration Sub-Luminous Type Ia SNe? (e.g. 2008ha; Valenti +09; Foley+09) 2) Beacon to Gravitational Wave Source (e.g. LIGO)

  8. Circinus X-1 (ATCA 1.4 GHz) AIC as Short GRB Progenitor Tudose+06 • Relativistic Jet from NS Accretion (Analogous to BH Accretion after NS-NS / NS-BH Merger) • GRB Duration ~ Accretion Time ~ Sec • Host Galaxies: Early & Late Type Predict Location Inside galaxy or GC • No Bright Supernova (Hjorth+05) (but fainter transient lasting ~ 1 day) • Weaker / Distinct Grav. Wave Signal Heinz+07 050724; Berger+05 050709; Fox+05

  9. Short GRBs with Extended Emission GRB050709 I. II. III. Perley et al. 2008 GRB080503 SEE/SGRB ~ 30 BATSE SGRBEEs (Norris & Bonnell 2006)

  10. Extended Emission from Magnetar Spindown (Usov 92; Thompson 94; Metzger, Thompson, & Quataert 07; Metzger, Quataert, & Thompson 08)  • ERot~5 1052 erg, SD ~100 s for P ~ 1 ms& B ~ 1015 G • Emission Delay: Neutron Star Cooling Time (~10 s) NS “Proto-Magnetar” Winds (Metzger+07) Wind Evolution Internal Shock Emission 1016 G 1016 G 3 1015 G 1015 G 1016 G 3 1015 G 1015 G Metzger+08 LC ~  3 1015 G P0 = 1 ms 1015 G

  11. Summary WD NS • AIC + Rapid Rotation  Proto-Neutron Star + Accretion Disk • Disk Viscously Spreads, Neutrino Irradiation Drives n/p to ~ 1 • Thermal/Nuclear-Driven Winds blow disk apart at t ~ 1 second  ~ 10-2 M in 56Ni Synthesized in Outflow  Optical Transient with LV ~ 1041 erg s-1 for ~ 1 day (Longer Duration Possible in WD-WD Merger Case) - Detectable w/ Transient Surveys or as Beacon to G-Wave Source • NS Accretion may also Produce a Short GRB • Extended Emission from S-GRBs Hard to Explain w/ Accretion • If NS is Strongly Magnetized, EE may be Rotation Powered  Proto-Magnetar Wind + Internal Shock Emission Model Fits Data

More Related