260 likes | 376 Views
A 2-category of dotted cobordisms and a universal odd link homology. Krzysztof Putyra Columbia University , New York. III Knots in Poland, Będlewo July 27, 2010. What is covered ?. Even vs odd link homologies Chronological cobordisms Dotted cobordisms with chronologies
E N D
A 2-category of dottedcobordisms and a universalodd link homology Krzysztof Putyra Columbia University, New York IIIKnotsin Poland, Będlewo July 27, 2010
Whatiscovered? Evenvsodd link homologies Chronologicalcobordisms Dottedcobordismswithchronologies ChronologicalFrobeniusalgebras
Cube of resolutions A crossinghastworesolutions Example A 010-resolution of theleft-handedtrefoil Type0 (up) Type1 (down) 3 1 3 1 010 2 2 Louis Kauffman
Cube of resolutions 110 100 1 3 2 verticesaresmootheddiagrams 000 111 101 010 011 001 edgesarecobordisms ObservationThisis a commutative diagram in a category of 1-manifolds and cobordisms
Mikhail Khovanov Khovanovcomplex Evenhomology (K, 1999) Oddhomology (O R S, 2007) Apply a gradedpseudo-functor see: arXiv:math/9908171 • Apply a gradedfunctor see: arXiv:0710.4300 Result: a cube of moduleswithbothcommutative and anticommutativefaces Result: a cube of moduleswithcommutativefaces Peter Ozsvath
Mikhail Khovanov Khovanovcomplex Odd: signsgiven by homologicalproperties Even: signsgivenexplicitely directsumscreatethecomplex {+2+3} {+3+3} {+0+3} {+1+3} TheoremHomologygroups of thecomplexC(D) are link invariants. Thegraded Euler characte-ristic of C(D) isthe Jones polynomialJL(q). Peter Ozsvath
Khovanovcomplex 110 100 1 3 2 000 111 101 010 011 001 edgesarecobordismswithsigns Objects: sequences of smootheddiagrams Morphisms: „matrices” of cobordisms Theorem (B-N, 2005) Thecomplexis a link invariant under chainhomotopies and somelocalrelations. Dror Bar-Natan
Khovanovcomplex Evenhomology (B-N, 2005) Oddhomology (P, 2008) Complexes for tanglesinChCob ? ?? ??? ???? • Complexes for tanglesinCob • Dottedcobordisms: • Neck-cuttingrelation: • Delooping and Gauss elimination: • Lee theory: = + – = {-1} {+1} = 1 = 0
Chronologicalcobordisms An arrow: choice of a in/outcomingtrajectory of a gradient flow of τ A chronology: aseparativeMorse function τ. An isotopy of chronologies: a smooth homotopyHs.th. Ht is a chronology Pick one FactIfτ0τ1and dimW = 2,thereexistisotopies of M and Ithatinduce an isotopy of thesechronologies.
Chronologicalcobordisms A change of a chronologyis a smoothhomotopyH. ChangesH and H’ areequivalentifH0 H’0 and H1 H’1. RemarkHtmight not be a chronology for somet (so calledcriticalmoments). Fact (Cerf, 1970) Everyhomotopyisequivalent to a homotopywithfinitely many criticalmoments of twotypes: type I: type II: Theorem (P, 2008) 2ChCobwithchanges of chronologiesis a 2-cate-gory. Thiscategoryisweaklymonoidalwith a strictsymmetry.
Chronologicalcobordisms Criticalpointscannot be permuted: Critical pointsdo not vanish: Arrowscannot be reversed:
Chronologicalcobordisms A solutionin an R-additiveextension for changes: • type II: identity a b Any coefficientscan be replaced by 1’s by scaling:
Chronologicalcobordisms A solutionin an R-additiveextension for changes: • type II: identity • generictype I: MM= MB= BM= BB= X X2 = 1 SS= SD= DS= DD= Y Y2 = 1 SM= MD= BS= DB= Z MS= DM= SB= BD= Z-1 CorollaryLetbdeg(W) = (#B #M, #D #S). Then AB= XYZ wherebdeg(A) = (, ) and bdeg(B) = (, ).
Chronologicalcobordisms Some of thechanges: whereX 2 = Y 2= 1 Note (X, Y, Z) → (-X, -Y, -Z) inducesan isomorphismon complexes.
Chronologicalcobordisms A solutionin an R-additiveextension for changes: • type II: identity • generictype I: • exceptionaltype I: MM= MB= BM= BB= X X2 = 1 SS= SD= DS= DD= Y Y2 = 1 SM= MD= BS= DB= Z MS= DM= SB= BD= Z-1 AB= XYZ bdeg(A) = (, ) bdeg(B) = (, ) evenodd XYZ 1 -1 YXZ 1 -1 ZYX 1 -1 1 / XY X / Y
Chronologicalcobordisms A solutionin an R-additiveextension for changes: • type II: identity • general type I: • exceptionaltype I: 1 / XY or X / Y Theorem(P, 2010) Withtheabove: Aut(W) = {1} if#hdls(W) = 0 and #sphr(W) 1 Aut(W) = {1, XY} otherwise MM= MB= BM= BB= X X2 = 1 SS= SD= DS= DD= Y Y2 = 1 SM= MD= BS= DB= Z MS= DM= SB= BD= Z-1 AB= XYZ bdeg(A) = (, ) bdeg(B) = (, ) evenodd XYZ 1 -1 YXZ 1 -1 ZYX 1 -1
Chronologicalcobordisms compare with Bar-Natan: arXiv:math/0410495 Theorem(P, 2008) Thecomplexisinvariant under Reidemeistermovesup to chainhomotopiesand thefollowinglocalrelations: wherethecriticalpoints on theshown parts of cobordismsareconsequtive, i.e. anyothercritical point appearsearlierorlaterthantheshown part.
Dottedchronologicalcobordisms MotivationCutting a neckdue to 4Tu: I may be 0! Z(X+Y) = + Adddotsformallyand assumetheusualS/D/Nrelations: I’mhomo-geneous! = 1 (S) (D) bdeg( ) = (-1, -1) = + – (N) A chronologytakescare of dots, coefficientsmay be derivedfrom (N): M M M= B= XZ S= D= YZ-1 = XY = = 0
Dottedchronologicalcobordisms MotivationCutting a neckdue to 4Tu: I may be 0! Z(X+Y) = + Adddotsformallyand assumetheusualS/D/Nrelations: I’mhomo-geneous! = 1 (S) (D) bdeg( ) = (-1, -1) = + – (N) A chronologytakescare of dots, coefficientsmay be derivedfrom (N): M= B= XZ S= D= YZ-1 = XY = 0 RemarkT and 4Tucan be derivedfromS/D/N. Noticeallcoefficientsarehidden!
Dottedchronologicalcobordisms Theorem (delooping) Thefollowingmorphismsaremutuallyinverse: {–1} {+1} ConjectureWe canuseit for Gauss elimination and a divide-conqueralgorithm. Problem How to keeptrack on signsduring Gauss elimination? –
Dottedchronologicalcobordisms TheoremThereareisomorphisms Mor(, ) R[h, t]/((XY – 1)h, (XY – 1)t) =: R Mor(, ) v+R v-R=: A given by bdeg(h) = (-1, -1) bdeg(t) = (-2, -2) bdeg(v+) = ( 1, 0) bdeg(v- ) = ( 0, -1) h t = v+ v- Ais a bimoduleoverR : = left module: right module:
Dottedchronologicalcobordisms Algebra/coalgebrastructure: given by cobordisms = = XZ = = XZ Operations areright-linear, but not left-linear! = Z2 =
Universality of dottedcobordisms A chronologicalFrobenius system (R, A) inAisgiven by a monoidal2-functor F: 2ChCob A: R = F() A = F( ) • We furtherassume: • Risgraded, A = Rv+Rvisbigraded • bdeg(v+) = (1, 0) and bdeg(v) = (0, -1) A basechange: (R, A) (R', A') whereA' := ARR' A twisting: (R, A) (R, A') ' (w) = (yw) ' (w) = (y-1w) wherey Aisinvertible and deg(y) = (1, 0). TheoremIf(R, A')is a twisting of (R, A)then C(D; A') C(D; A) for any diagram D.
Universality of dottedcobordisms Theorem (P, 2010) Any rank2chronologicalFrobenius system withgeneratorsindegrees(1, 0) and (0, -1)arisesfrom(R, A) by a basechange and a twisting. Here, R = [X, Y, Z1]/(X2-1,Y2-1). CorollaryHaving a chronologicalFrobenius system F = (RF, AF), thehomologyHF(L) is a quotient of H(L). CorollaryThereis no odd Lee theory: t = 1 X = Y CorollaryThereisonly one dotinoddtheoryover a field: X Y XY 1 h = t = 0
EvenvsOdd Evenhomology (B-N, 2005) Oddhomology (P, 2010) Complexes for tanglesinChCob Dottedchronologicalcobordisms - only one dotover a field, if X Y Neck-cuttingwith no coefficients Delooping – yes Gauss elimination – sign problem Lee theoryexistsonly for X = Y • Complexes for tanglesinCob • Dottedcobordisms: • Neck-cuttingrelation: • Delooping and Gauss elimination: • Lee theory: = + – = {-1} {+1} = 1 = 0
Furtherremarks • HigherrankchronologicalFrobeniusalgebrasmay be given as multi-graded systems withthenumber of degreesequal to therank • For virtuallinkstherestillshould be onlytwodegrees, and a puncturedMobius band musthave a bidegree (–½, –½) • Embeddedchronologicalcobordisms form a (strictly) braidedmonoidal2-category; same holds for thedottedversion • The2-category nChCob of chronologicalcobordisms of dimensionncan be definedinthe same way. Each of themis a universalextension of nCobwith a strictsymmetryinthesense of A.Beliakova and E.Wagner • A linearsolution for chronologicalnestedcobordismsexists and isgiven by 9parameters (squares of 3 of themareequal1)