310 likes | 560 Views
04 Introduction to Analytic Geometry. College Algebra. 4.1 Coordinate Systems. Origin Line Plane Point Coordinate (a,b) same as (x,y) Units Three Space (a,b,c). z. y. a. 0. b. y. x. x. Dimensions. 1-D 2-D 3-D. z. y. a. 0. b. y. x. x. Dimensions. 1-D 2-D 3-D.
E N D
04 Introduction to Analytic Geometry College Algebra
4.1 Coordinate Systems • Origin • Line • Plane • Point • Coordinate (a,b) same as (x,y) • Units • Three Space (a,b,c)
z y a 0 b y x x Dimensions • 1-D • 2-D • 3-D
z y a 0 b y x x Dimensions • 1-D • 2-D • 3-D
Coordinate System Review y II I x Origin III IV
Line vs Line Segment y y = mx + b x
Line vs Line Segment y AB B x A
b a Ordered Pairs Review : (a,b) II I (-a,b) (a,b) III IV (-a,-b) (a,-b)
Transformations – Model Motion • Translation – Glide or Slide • Rotation – (about an axis) • Reflection – Mirror image • Dilation – larger or smaller
Terminology • Image – final image after transformation Labeled with “Prime” • Pre-image – image before transformation Labeled with Capital Letters B B’ Horizontal Translation A A’ Pre-Image Image
Translation A Pre-Image Image Slide Arrow C B A’ B’ C’
Rotation – 90° 180° 270° 45° ? ° Pre-Image Image 270° Image 90° Image 180° Note: Example Rotation is Clockwise
Reflection Pre-Image Image Mirror Line
( x , y ) ( x , y ) ( x , y ) ( x , y ) ( x , y ) ( x , y ) ( x + h, y ) ( x , y + v ) ( x , -y ) ( -x , y ) ( -x , -y ) ( nx, ny ) Graphing Motion Pre-Image Image Horizontal Translation Vertical Translation Reflection through x-axis Reflection through y-axis 180 Rotation about Origin Dilation
Back to the text… • Distance Formula • 1-D • 2-D • 3-D
a 0 b 1-D • | b-a | or • | a-b |
2-D: “THE” Distance formula • what do you know about the distance formula???
2-D: “THE” Distance formula (5,7) (-3,2) d = sqrt((5- -3)2 + (7-2)2)
2-D: “THE” Distance formula (5,7) (-3,2) d = (5- -3)2 + (7-2)2
2-D: “THE” Distance formula (5,7) (-3,2) d = (8)2 + (5)2
2-D: “THE” Distance formula (5,7) (-3,2) d = 64 + 25
2-D: “THE” Distance formula (5,7) (-3,2) d = 89 = 9.434
Who can do the Pythagorean Theorem? (5,7) d (-3,2) ( 5,2)
Who can do the Pythagorean Theorem? (5,7) d 5 (-3,2) ( 5,2) 8 d = 82 + 52
Who can do the Pythagorean Theorem? (5,7) d 5 (-3,2) ( 5,2) 8 d = 64 + 25
The distance formula and the Pythagorean Theorem are very similar.