1 / 4

Daylength

Daylength For sunrise and sunset, θ = 90  , so cosθ = sinφ sinδ + cosφ cosδ cosτ becomes cosτ = -tanφ tanδ Daylength = 2 cos -1 (-tanφ tanδ) What is the daylength at Fairbanks, Alaska (65  N, 148  W) at the winter solstice? Daylength = 2 cos -1 (-tan(65 ) tan(-23.5  ))

Download Presentation

Daylength

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Daylength • For sunrise and sunset, θ = 90 , so • cosθ = sinφ sinδ + cosφ cosδ cosτ becomes • cosτ = -tanφ tanδ • Daylength = 2 cos-1(-tanφ tanδ) • What is the daylength at Fairbanks, Alaska (65 N, 148 W) at the • winter solstice? • Daylength = 2 cos-1(-tan(65) tan(-23.5)) • = 2 cos-1(-tan(65) tan(-23.5)) • =42.4 / (15hr-1) = 2hr 49min • Sunrise: τ = -21.2 Sunset: τ = +21.2 •  (T – 12)*15 + ( - ) + F / 4 - D (T – 12)*15 = τ - ( - ) - F / 4 + D Sunrise: (T – 12)*15 = -21.2 -(-148+135) – 0 + 0 (T – 12)*15 = -8.2 T =11:27am

  2. Azimuth Angle A = 180 º + sin-1 (cos δ sin τ /sin θ) Example 1 : Find the azimuth angle at sunrise in Fairbanks at the winter solstice. A = 180 º + sin-1 (cos δ sin τ) A =180 º + sin-1 (cos (-23.5 º) sin (-21.2 º)) A =180 º + (-19. 4 º ) = 160.6 º Example 2 : Find the azimuth angle at τ = -120 in Fairbanks at the summer solstice. A = 180 º + sin-1 (cos δ sin τ) A =180 º + sin-1 (cos (23.5 º) sin (-120 º)) A =180 º + sin-1 (-0.79) A = 180 º + (-52 º ) = 128 º ???? No. sin-1 (-0.79) has 2 values. A = 180 º + (-128 º ) = 52 º

  3. A = 180 º + sin-1 (cos δ sin τ) At the equinox, cos δ = 1 At sunset, sin τ = 1 A = 180 º + 90 δ = 270 º A = 180 º + sin-1 (cos δ sin τ) At the equinox, cos δ = 1 At sunrise, sin τ = -1 A = 180 º + -90 º = 90 º For δ > 0, i.e. March 20-Sept. 22, sunrise A < 90 º and sunset A > 270 º in the Northern Hem. For δ < 0, i.e. Sept. 22-March 20, sunrise A > 90 º and sunset A < 270 º in the Northern Hem.

  4. Shortcut for determining Noon Zenith Angle cosθ = sinφ sinδ + cosφ cosδ cosτ At “noon”, cosτ = 1, so cosθ = sinφ sinδ + cosφ cosδ 3 Trig. Identities cos(x+y) = cosxcosy – sinxsiny sin(-y) = -siny cos(-y) = cosy These yield cos(x-y) = cosxcosy + sinxsiny Therefore, cosθ = cos(φ-δ) or θ = |φ-δ| Denver for Feb. 1: θ = 40 º – (-17 º ) = 57 º Buenos Aires for Feb. 13: θ = |-35 º – (-13 º )| = 22 º Fairbanks for Dec. 21: θ = 65 º – (-23.5 º ) = 88.5 º

More Related