700 likes | 1.17k Views
Particle Filters In Robotics or: How the World Became To Be One Big Bayes Network Sebastian Thrun Carnegie Mellon University University of Pittsburgh This Talk Robotics Research Today Particle Filters In Robotics 4 Open Problems Robotics Yesterday Robotics Today Robotics Tomorrow?
E N D
Particle Filters In Roboticsor: How the World Became To Be One Big Bayes Network Sebastian Thrun Carnegie Mellon University University of Pittsburgh
This Talk Robotics Research Today Particle Filters In Robotics 4 Open Problems
This Talk Robotics Research Today Particle Filters In Robotics 4 Open Problems
Robotics @ CMU, 1997 with W. Burgard, A.B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner
Robotics @ CMU, 1998 with M. Beetz, M. Bennewitz, W. Burgard, A.B. Cremers, F. Dellaert, D. Fox, D. Hähnel, C. Rosenberg, N. Roy, J. Schulte, D. Schulz
The Localization Problem fast-moving ambiguous identity non-statio- nary many objects static few objects one object uniquely identifiable local (tracking) global kidnapped • Objects • Robots • Other Agents
Probabilistic Localization • “Bayes filter” • HMMs • DBNs • POMDPs • Kalman filters • Particle filters • Condensation • etc m map z1 z3 z3 z2 observations . . . x1 x1 x1 x2 x2 x2 x3 xt robot poses robot poses u3 u3 u3 u3 ut ut ut u2 u2 u2 u2 controls controls map m laser data
Bayes Filter Localization [Nourbakhsh et al 94] [Simmons/Koenig 95] [Kaelbling et al 96]
What is the Right Representation? Multi-hypothesis Kalman filter [Weckesser et al. 98], [Jensfelt et al. 99] [Schiele et al. 94], [Weiß et al. 94], [Borenstein 96], [Gutmann et al. 96, 98], [Arras 98] Particles [Kanazawa et al 95] [de Freitas 98] [Isard/Blake 98] [Doucet 98] Histograms (metric, topological) [Nourbakhsh et al. 95], [Simmons et al. 95], [Kaelbling et al. 96], [Burgard et al. 96], [Konolige et al. 99]
Monte Carlo Localization (MCL) With: Wolfram Burgard, Dieter Fox, Frank Dellaert
Monte Carlo Localization With: Frank Dellaert
Particle Filter in High Dimensions fast-moving ambiguous identity non-statio- nary many objects/features static few objects one object uniquely identifiable local (tracking) global kidnapped
Learning Mapsaka Simultaneous Localization and Mapping (SLAM) 70 m
EKF Approach O(N2) [Smith, Self, Cheeseman, 1985]
EKS-SLAM for Underwater MappingCourtesy of Stefan Williams and Hugh Durrant-Whyte, Univ of Sydney
Particle Filtering in Low Dimensions! sample pose robot poses
Particle Filtering in High Dimensions? sample map maps
Insight: Conditional Independence Factorization first developed by Murphy & Russell, 1999 1 Landmark 1 z1 z3 observations . . . x1 x2 x3 xt Robot poses u3 ut u2 controls z2 zt 2 Landmark 2
Rao-Blackwellized Particle Filters … robot poses landmark n=1 landmark n=N landmark n=2 … landmark n=1 landmark n=N landmark n=2 [Murphy 99, Montemerlo 02]
The FastSLAM Algorithm .2 .7 .1
FastSLAM - O(MN) O(M) Constant time per particle O(M) Constant time per particle O(MN) Linear time per particle • Update robot particles based on control ut • Incorporate observation zt into Kalman filters • Resample particle set M = Number of particles N = Number of map features
Ben Wegbreit’s Log-Trick n 4 ? T F new particle n 2 ? F T n 3 ? T F [i] [i] m3,S3 n 4 ? k 4 ? T T F F old particle k 2 ? n 2 ? k 6 ? n 6 ? T T F F T T F F k 1 ? n 1 ? k 3 ? n 3 ? k 1 ? n 5 ? k 3 ? n 7 ? T T F F T T F F T T F F T T F F [i] [i] [i] [i] [i] [i] [i] [i] [i] [i] [i] [i] [i] [i] [i] [i] [i] [i] [i] [i] [i] [i] [i] [i] [i] [i] [i] [i] [i] [i] m1,S1 m1,S1 m2,S2 m2,S2 m3,S3 m3,S3 m4,S4 m4,S4 m5,S5 m5,S5 m6,S6 m6,S6 m7,S7 m7,S7 m8,S8 m8,S8
FastSLAM - O(M logN) O(M) Constant time per particle O(MlogN) Log time per particle O(M logN) Log time per particle • Update robot particles based on control ut • Incorporate observation zt into Kalman filters • Resample particle set M = Number of particles N = Number of map features
Advantage of Structured PF Solution FastSLAM: O(MlogN) Moore’s Theorem: logN 30 M: discussed later + global uncertainty, multi-modal + non-linear systems + sampling over data associations Kalman: O(N2) 500 features
3 Examples Particles + Kalman filters Particles + Point Estimators Particles + Particles
Outdoor Mapping (no GPS) • 4 km excursion With Juan Nieto, Eduardo Nebot, Univ of Sydney
3 Examples Particles + Kalman filters Particles + Point Estimators Particles + Particles
Indoor Mapping • Map: point estimators (no uncertainty) • Lazy
Importance of Particle Filters Non-probabilistic Probabilistic, with samples
Multi-Robot Exploration DARPA TMR Texas DARPA TMR Maryland With: Reid Simmons and Dieter Fox
3 Examples Particles + Kalman filters Particles + Point Estimators Particles + Particles
Tracking Moving Features With: Michael Montemerlo
Map-Based People Tracking With: Michael Montemerlo
Autonomous People Following With: Michael Montemerlo
Advantage of Structured PF Solution + global uncertainty, multi-modal + non-linear systems + sampling over data associations Kalman: O(N2) FastSLAM: O(MlogN) 500 features Moore’s Theorem: logN 30 M: discussed now!
Worst-Case Environment ? … … N landmarks robot path … … Kalman filters: Maps (relative information) converges for linear-Gaussian case
Relative Map Error (Simulation) Kalman Filter Kalman Filter 250 particles error steps
Relative Map Error (Simulation) Kalman Filter Kalman Filter 250 particles 250 particles 100 particles 100 particles 2 particles error steps
Robot-To-Map Error (Simulation) Kalman Filter error 250 particles 100 particles 2 particles steps