1 / 28

Transformational Proof: Informal and Rigorous

Transformational Proof: Informal and Rigorous. Kristin A. Camenga Kristin.camenga@houghton.edu Houghton College November 12,2009. Note: all slides, resources, etc. from this talk will be posted on my home page under “Teacher Resources” within the next week or so. Outline.

Download Presentation

Transformational Proof: Informal and Rigorous

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Transformational Proof:Informal and Rigorous Kristin A. Camenga Kristin.camenga@houghton.edu Houghton College November 12,2009

  2. Note: all slides, resources, etc. from this talk will be posted on my home page under “Teacher Resources” within the next week or so.

  3. Outline • What is transformational proof? • Why is transformational proof important? • How do you do a transformational proof? • What does transformational proof contribute to student learning? • Can I try?

  4. What is transformational proof?

  5. An Informal Example The Isosceles Triangle Theorem • Standard Method: Draw median and show triangles congruent • Transformational method: Draw angle bisector and reflect triangle over it to see that angles coincide

  6. Key ideas • Uses transformations: reflections, rotations, translations, dilations • Depends on properties of the transformation: • Congruence is shown by showing one object is the image of the other under an isometry (preserves distance and angles) • Similarity is shown by showing one object is the image of the other under a similarity (preserves angle and ratio of distances)

  7. Why is transformational proof important?

  8. NYS Core Curriculum • G.RP.7 Construct a proof using a variety of methods (e.g., deductive, analytic, transformational) • G.G.57 Justify geometric relationships (perpendicularity, parallelism,congruence) using transformational techniques (translations,rotations, reflections)

  9. Historical significance • Euclid’s Elements: • In the proof of SAS congruence, Euclid writes “If the triangle ABC is superposed on the triangle DEF, and if the point A is placed on the point D and the straight line AB on DE, then the point B also coincides with E, because AB equals DE.” • This is the idea of a transformation! • Erlangen program: • 19th century program to unify geometry by looking at the transformations in different geometries and their invariants (tied to abstract algebra) • This approach to geometry is the current one in higher math

  10. Advantages • More visual and intuitive; dynamic • Helpful in understanding geometry historically • Builds intuition and understanding of meaning • Generalizes to other geometries more easily

  11. How do you do a transformational proof?

  12. Informal Transformational Proofs • A visual, intuitive sense of how a transformation maps one shape to another • Builds on ideas of symmetry from elementary grades and could easily be done in middle school

  13. Example: Arcs Cut by Parallel Lines (informal) Given: AB∥CD Prove: arc AC ≅ arc BD Idea: Reflect over the diameter perpendicular to CD.

  14. Example: Parallelograms(Informal) Given: Parallelogram ABDC Idea: Rotate ABDC around the midpoint of the diagonal AD Results: • AC≅DB; AB≅DC • ∠B≅∠C • △ABD≅△DCA

  15. Example: SAS(Informal) Given: AB≅A’B’, AC≅A’C’, ∠A≅∠A’ Prove: △ABC≅△A’B’C’ Idea: translate A to A’ and rotate △ABC until AB coincides with A’B’. Reflect over A’B’. Then the whole triangle coincides!

  16. Example: Commutativity of Multiplication (Informal) … To show mxn=nxm, • Represent mxn as an array of dots with m rows and n columns • Rotate the array by 90 degrees and you have n rows and m columns, or nxm dots … … . . . … … … … … … … … . . . … … …

  17. Background to formalize transformational proof • Experience that our vision can trick us • Transformations and their properties: • Isometries – reflections, rotations, translations • Preserve lengths • Preserve angles • Dilations • Preserve angles • Preserve ratios of lengths • Image lines are parallel to original lines • Symmetries of basic shapes (lines, circles) • Basic properties and axioms of geometry

  18. Example: Isosceles Triangle Theorem (Rigorous) Given: △ABC, where AB≅AC • Draw the angle bisector AD. Therefore, ∠BAD≅∠CAD. • Reflect over AD. • AD reflects to itself. • ∠BAD reflects to ∠CAD since the angles are congruent and share side AD. • AB reflects to AC since they are corresponding rays of angles which coincide after reflection. • B reflects to C since A reflects to itself and AB≅AC. • BD reflects to CD since B reflects to C do and D reflects to itself and two points determine exactly one segment. • Since AB reflects to AC, B to C and BD to CD, ∠ABD reflects to ∠ACD. • Therefore ∠ABD≅∠ACD.

  19. Example: Arcs Cut by Parallel Lines (Rigorous) Given: AB∥CD Prove: arc AC ≅ arc BD Draw diameter EF perpendicular to CD, intersecting CD at H and AB at G. • Since AB ∥CD, EH⊥ AB since it makes the same angle with both CD and AB. Also, since diameters bisect chords, CH≅HD and AG≅GB • Reflect over EF. • Since EF is a diameter, the circle reflects to itself • Lines CD and AB reflect to themselves since they are perpendicular to EF • Since CH≅HD and AG≅GB, A reflects to B and C reflects to D. • Since the circle reflects to itself and the endpoints of arc AC reflects to BD, arc AC reflects to BD. • Therefore arc AC ≅ arc BD

  20. Example: Parallelograms(Rigorous) Given: Parallelogram ABDC • Draw diagonal AD and let P be the midpoint of AD. • Rotate the figure 180⁰ about point P. • Line AD rotates to itself. • Since P is the midpoint of AD, PA≅PD and A and D rotate to each other. • Since by definition of parallelogram, AB∥CD and AC∥BD, ∠BAD≅∠CDA and ∠CAD≅∠BDA. Therefore the two pairs of angles, ∠BAD and ∠CDA , and ∠CAD and ∠BDA, rotate to each other. • Since the angles ∠CAD and ∠BDA coincide, the rays AC and DB coincide. Similarly, rays AB and DC coincide because ∠BAD and ∠CDA coincide. • Since two lines intersect in only one point, C, the intersection of AC and DC, rotates to B, the intersection of DB and AB, and vice versa. • Therefore the image of parallelogram ABDC is parallelogram DCAB. • Based on what coincides, AC≅DB, AB≅DC, ∠B≅∠C, △ABD≅△DCA, and PC≅PB

  21. Example: SAS(Formal) Given: AB≅A’B’, AC≅A’C’, ∠A≅∠A’ • Translate △ABC so that A coincides with A’. • Rotate △ABC so that ray AB coincides with ray A’B’. Since AB≅A’B’, B coincides with B’. • If C and C’ are on different sides of line AB, reflect △ABC over line AB. • Since ∠A≅∠A’ and the rays AB and A’B’ coincide and are on the same side of the angle, ∠A coincides with∠A’. • Since the angles coincide, the other rays AC and A’C’ coincide. • Since AC≅A’C’, C coincides with C’. • Since B coincides with B’ and C with C’ and two points determine exactly one line, BC coincides with B’C’. Since all the sides coincide, the angles do, as well. • Since all sides and angles coincide, △ABC≅△A’B’C’

  22. Example: June Geometry Regents #38 Given △ABC and △EDC. C is the midpoint of BD and AE. Prove: AB∥DE • Rotate the figure around the point C 180⁰ • Lines AE and BD rotate to themselves by symmetries of a line • Since C is the midpoint, BC≅CD and AC≅CE, so B rotates to D and A rotates to E. • Since two points determine a unique line, AB rotates to ED. • Since ∠A has sides of AB and AE, it rotates to the angle with sides ED and EA, or ∠E. Therefore ∠A≅∠E • Since , alternate interior angles are congruent and AB ∥DE.

  23. What does transformational proof contribute to student learning?

  24. Student Benefits • Builds on students’ intuitive ideas so they can participate in proof from the beginning • Encourages visual and spatial thinking, helping students consider the same ideas in multiple ways • Serves as a guide for students to remember theorems and figure out problems • Promotes understanding by offering an alternate explanation

  25. Student Benefits • Reinforces properties of transformations • Gives application for a number of different axioms or theorems we don’t use frequently • Another method to analyze geometric figures, looking at them piece by piece to get the whole

  26. Can I try?

  27. Here are a few for you to try! • Vertical angles are congruent. • If the base angles of a triangle are congruent, then the sides opposite those angles are congruent. • If a quadrilateral has diagonals that are perpendicular bisectors of each other, then it is a rhombus. • HL: If two right triangles have congruent hypotenuses and one pair of legs congruent, then the triangles are congruent.

  28. Resources • Wallace, Edward C., and West, Stephen F., Roads to Geometry: section on transformational proof • Henderson, David W., and Taimina, Daina, Experiencing Geometry • The eyeballing game http://woodgears.ca/eyeball/

More Related