1 / 32

SHArK Outreach ⊂ Powering the Planet (NSF CCI Solar Program)

SHArK Outreach ⊂ Powering the Planet (NSF CCI Solar Program). Ella Wong 2009 Summer Solar Class Professor Wamser, PSU. SHArK (Solar Hydrogen Activity Research Kit)- Mission/Goals. “Dedicated to splitting water with sunlight”

othello
Download Presentation

SHArK Outreach ⊂ Powering the Planet (NSF CCI Solar Program)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SHArK Outreach⊂ Powering the Planet(NSF CCI Solar Program) Ella Wong 2009 Summer Solar Class Professor Wamser, PSU

  2. SHArK (Solar Hydrogen Activity Research Kit)- Mission/Goals • “Dedicated to splitting water with sunlight” • To discover stable metal oxide semiconductors that can efficiently photoelectrolyze water and that is economically viable • To engage and encourage young people to take an active role in solving the global energy problem • To provide students the opportunity to participate in real time, active scientific research • Outreach effort from Bruce Parkinson’s group (University of Wyoming) • SHArK is part of the NSF-funded Powering the Planet Project http://www.thesharkproject.org/

  3. NSF CCI (Center for Chemical Innovation) Solar Program- Powering the Planet http://www.ccisolar.caltech.edu/ • Goal to develop efficient, inexpensive, sustainable way(s) to convert solar energy into stored chemical fuel(s) • Ideally to split water with sunlight using cheap, safe, chemically stable, easily-obtained earth-abundant materials yielding hydrogen as chemical fuel • 3 component water splitting model

  4. 3 component water splitting model • membrane-supported assembly that captures sunlight and efficiently creates separated electrons and holes having sufficient chemical potential to drive the water-splitting reactions • two-electron catalyst to facilitate reduction of water to H2 at the photocathode • four-electron catalyst for water oxidation to O2 at the photoanode http://www.ccisolar.caltech.edu/webpage/95

  5. Harry Gray, Watson Lecture, 2/18/2009

  6. Harry Gray, Watson Lecture, 2/18/2009

  7. Carolyn Valdez, Jillian Dempsey Harry Gray, Watson Lecture, 2/18/2009

  8. Harry Gray, Watson Lecture, 2/18/2009

  9. MIT group’s progress on catalyst for oxygen-evolving side Tutorial Review Chem. Soc. Rev., 2009, 38, 109 - 114, DOI: 10.1039/b802885k Cobalt–phosphate oxygen-evolving compound Matthew W. Kanan, Yogesh Surendranath and Daniel G. Nocera The utilization of solar energy on a large scale requires efficient storage. Solar-to-fuels has the capacity to meet large scale storage needs as demonstrated by natural photosynthesis. This process uses sunlight to rearrange the bonds of water to furnish O2 and an H2-equivalent. We present a tutorial review of our efforts to develop an amorphous cobalt–phosphate catalyst that oxidizes water to O2. The use of earth-abundant materials, operation in water at neutral pH, and the formation of the catalyst in situ captures functional elements of the oxygen evolving complex of Photosystem II. http://www.technologyreview.com/Energy/21155/page1/ http://web.mit.edu/newsoffice/2008/oxygen-0731.html • runs on electricity from outlet • still needs development work on photoanode material

  10. Harry Gray, Watson Lecture, 2/18/2009

  11. Harry Gray, Watson Lecture, 2/18/2009 http://pr.caltech.edu/periodicals/caltechnews/articles/v42/sun.html

  12. SHArK Outreach http://www.thesharkproject.org/ Harry Gray’s Powering the Planet with Solar Fuels Lecture at Caltech’s Beckman Auditorium on 2/18/2009- features SHArK demonstration and a call for a “solar army” of students to work on the challenges. http://today.caltech.edu/theater/item?story%5fid=33982 Lectures by Nate Lewis- http://today.caltech.edu/theater/item?story_id=8424(5/25/05) http://nrg.caltech.edu/index.html(11/30/2007)

  13. Harry Gray, Watson Lecture, 2/18/2009

  14. Powering the Planet Project Solar Carpet Video Clip With Nate Lewis http://www.thirteen.org/curious/survival/creating-an-artificial-leaf/17/ Solar Water Splitting Model http://www.ccisolar.caltech.edu/webpage/95

  15. http://web.mit.edu/newsoffice/2008/oxygen-0731.html Daniel Nocera and Matthew Kanan, MIT

  16. SHArK Specifics

  17. A SHArK Project Kit * LEGO Mindstorms® Kits * Extra LEGOs® Parts * Commercial Inkjet Printer * Pipettes * Commercial Green Laser Pointer * Data Acquisition Box * Conductive Glass Substrates * Etched Glass Electrochemical Cell * Alligator clips, Copper wire, and Graphite (counter-electrode) * Laser Safety Goggles * Software installed from website http://www.thesharkproject.org/

  18. Printing and Scanning Basics • An inkjet printer is used to print a mixture of aqueous metal nitrate solutions onto a conductive glass substrate to produce ternary metal oxides. The printed substrate is baked in an oven to decompose the nitrates salts to metal oxides. • Printer template designed to print two internal standards (Fe and Cu) with 3 or 4 other metals in a combinatorial pattern that allows for many different combinations and compositions of the metal oxides to be produced and screened at a time.

  19. Printing and Scanning Basics • Fe2O3 isn-type standard (photoanode, O2 production) • “lights up” with positive bias • CuO is p-typestandard (photocathode, H2 production) • “lights up” with negative bias • Printed metal oxide arrays are scanned for solar water splitting potential using the Lego Laser Scanning Station • Material with photocurrent response at least 2 times higher than either of the standards is considered promising. SHArK Manual Version 2.0 and SHArK Brochure

  20. Some material specifics • Glass substrate- fluorine-doped tin oxide (FTO) coating • Metal precursors- .35 M metal nitrate salt with .6 M ammonium nitrate (NH4NO3) and .015 M nitric acid (HNO3) • 500 °C overnight to convert to metal oxide • HP D5460 ink jet printer • Lego Mindstorms-based laser scanner (= 532 nm, green) SHArK Manual Version 2.0

  21. Metal oxides- Potential role in photoelectrode • Structural (Ti, W, Zr, Ta, Si, Mo, Nb, Hf, In, Sn, Ga, Y, Sc) • Light absorbing (Fe, Cr, V, Co, Mn, Ni, Cu, and some rare earths such as Ce) • Catalytic (Ru, Rh, Pd, Pt, Ir, Os, Re, Ni) • Ionic charge compensators (Ca, Sr, Ba, Mg, Zn, Cd, Li, Na, K, Rb, Cs) • Avoid toxic metals (Pb, Tl, Cd, Hg) Chem. Mater. 2005, 17, p. 4320

  22. CD/DVD Tray Cutout- holds substrate for printing http://www.thesharkproject.org/node/506

  23. Printing Template for HP D5460 • Black- Fe • n-type standard • positive bias • Magenta- Cu • p-type standard • negative bias • Cyan • Yellow Template provided by Jennifer Schuttlefield

  24. Sample Scans

  25. Cu-Cs-Fe-La From SHArK brochure

  26. Al-Co-Cs-Fe System: Template and Zero Bias Scan Chem Mater. 2008, 20, p. 2497

  27. Submitted by Cheung Grinnell on Tue, 07/07/2009 - 14:12 Metals: Co, Fe, Y, Zn Electrolyte pH: Basic Comments: electrolyte: Na2SO4 see follow-up scan titled "FeYZn comparision test" Positive Bias Negative Bias

  28. Submitted by Cheung Grinnell on Tue, 07/07/2009 - 13:53 Metals: Fe, Y, Zn Electrolyte pH: Basic Comments: electrolyte: Na2SO4 This slide was made to further examine the hotspot seen on the CoFeYZn scan to see which combination was most effective. Since the hotspot was found in the pos scan, only a pos scan was run. Positive Bias

  29. Submitted by Cheung Grinnell on Wed, 06/17/2009 - 09:45 Metals: Co, Cu, Fe, Zn Electrolyte pH: Basic Positive Bias Negative Bias

  30. Summary • SHArK engages students and provides a great opportunity to learn chemistry while participating in relevant research to help solve the global energy and climate change problems. • SHArK in conjunction with Powering the Planet joins students with researchers and scientists of many disciplines all over the world as we strive together to meet the Terawatt Challenge. • Special thanks to Bruce Parkinson and Jennifer Schuttlefield (University of Wyoming) for developing SHArK and reaching out. • And thanks to Professor Carl Wamser for bringing SHArK to PSU.

More Related