1 / 8

2.3 等差数列的前 n 项和 (2)

2.3 等差数列的前 n 项和 (2). 复习 : 数列 前 n 项和 :. 性质 :若数列 前 n 项和为 ,则. 等差数列的前 n 项和公式 :. 或. 等差数列的前 项和. 两个公式都表明要求 必须已知 中三个. 注意:. 补充例题. 如图,一个堆放铅笔的 V 形架的最下面一层放 1 支铅笔,往上每一层都比它下面一层多放 1 支,最上面一层放 120 支 . 这个 V 形架上共放了多少支铅笔?. 解:由题意知,这个 V 型架自下而上各层的铅笔数成等差数列,记为{ a n }.

otto-barker
Download Presentation

2.3 等差数列的前 n 项和 (2)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 2.3等差数列的前n项和(2)

  2. 复习: 数列 前n项和: 性质:若数列 前n项和为 ,则

  3. 等差数列的前n项和公式: 或 等差数列的前 项和 两个公式都表明要求 必须已知 中三个 注意:

  4. 补充例题 如图,一个堆放铅笔的V形架的最下面一层放1支铅笔,往上每一层都比它下面一层多放1支,最上面一层放120支. 这个V形架上共放了多少支铅笔? 解:由题意知,这个V型架自下而上各层的铅笔数成等差数列,记为{an}. 答:V型架上共放着7260支铅笔。

  5. 课本P51. 探究: 若一个数列  的前n项和为Sn=pn2+qn+r,其中p、q、r为常数,且p 0 ,那么这个数列一定是等差数列吗?若是, 它的首项与公差分别是什么? (解答过程在下一个幻灯片) {an}

  6. 解: ∵当n=1时, a1=s1=p+q+r. 当n≧2时, an= sn-sn-1= =2pn-p+q p+q+r (n=1) • ∴ an= 2pn-p+q (n≧2) 当r=0时,an=2pn-p+q(n≧1) 是等差数列,首项是a1=p+q 公差是d=2p.

  7. 例4.己知等差数列 5, 4 , 3 , … 的前n项和为Sn, 求使得Sn最大的序号n的值. 解:由题意知,等差数列5, 4 , 3 , …的公差 为 ,所以sn= [2×5+(n-1)( )] = = ( n- )2+ 答案: (7或8).

  8. 联系: an = a1+(n-1)d的图象是相 应直线 上 • 一群孤立的点.它的最值又是怎样?

More Related