1 / 27

1 . overview  GPD and nucleon structure  Experiments – Deeply Virtual Compton Scattering –

格子 QCD による核子の一般化パートン分布と クォーク角運動量の解析. 大谷 宗久 ( 杏林大学 ). 1 . overview  GPD and nucleon structure  Experiments – Deeply Virtual Compton Scattering –  Theory – Chiral Quark Soliton Model – 2 . lattice QCD  Axial FFs and quark spin  Moments of GPD(vector) and total angular momentum

otylia
Download Presentation

1 . overview  GPD and nucleon structure  Experiments – Deeply Virtual Compton Scattering –

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 格子QCDによる核子の一般化パートン分布と クォーク角運動量の解析 大谷 宗久 (杏林大学 ) 1. overview  GPD and nucleon structure  Experiments– Deeply Virtual Compton Scattering –  Theory – Chiral Quark Soliton Model – 2. lattice QCD Axial FFs and quark spin Moments of GPD(vector) and total angular momentum Summary 10 Jun. 2009@ Komaba

  2. Introduction  Generalized Parton Distributions of Nucleon q q' momentum transfer squared: t = (D  P'-P)2 longitudinal mt. transfer:  = -n ·D / 2 x+ x- H, E, … P P' • GPDs encode important information on Nucleon structure !

  3.  db W(k,b)  dkW(k,b) k dep. dist. (TMD) GPDH(x,b), E(x,b),… Sivers fn.: f1T(x, k), Collins fn.: H1(x, k), … F.T. GPDH(x,x, t), E(x,x, t),… Wigner distribution in phase space  X.Ji, PRL91(2003) A.Belitsky et.al., PRD69(2004) Wigner fn. W(k,b)∝ dr dq eik·r-iq·bP+q/2|y†(r/2) Gy(-r/2)|P- q/2 Intrinsic quark momentum:k Impact parameter: b Momentum transfer: q

  4. Form Factors = H (x,0,0) = H (x,0,0) = HT(x,0,0)  F1(t) =dx H (x, x, t) GA(t)= dx H (x, x, t) GT(t)=dxHT(x, x, t)  local limit forward limit Fourier transf. as moments in the forward limit Quark densityinb plane q(x, b) = d2 D e–i Db H (x, x=0, D2) Angular momentum  X.Ji, PRL78(1997) Jq= 1/2 dx x (H(x, x, 0) + E(x, x, 0)) u+d  1/2 (A20 + B20 )   sq= 1/2dx H(x, x, 0)u+d  1/2A10 Generalized Parton Distributions PDF q(x) Dq(x) dq(x) GPDs

  5. Deeply Virtual Compton Scattering Bethe-Heitler DVCS g e- Fi H,E,.. P F1×H, F2×E, …

  6. Beam Charge Asymmetry HERMES coll. PRD 75 (2007)011103 f : angle btw e scat. plane & prod. plane

  7. Longitudinal Target Spin Asymmetry CLAS coll. PRL 97 (2006)072002 f : angle btw e-scat. plane & prod. plane

  8.  K.Goeke et.al., PRC75(2007) GPDs in Chiral quark soliton model  M.Wakamatsu & H.Tsujimoto, PRD71(2005) 1/2x (H(x, 0, 0) + E(x, 0, 0) ) H(x, 0, 0) + E(x, 0, 0) x dependence calculable- no dynamical gluon- low energy scale

  9. forUKQCD-QCDSF collab. 1. overview  GPD and nucleon structure  Experiments– Deeply Virtual Compton Scattering –  Theory – Chiral Quark Soliton Model – 2. lattice QCD Axial FFs and quark spin Moments of GPD and total angular momentum Summary

  10. An,2k ,Bn,2k ,Cn are related to P | g {m 1Dm 2 Dm n} |P'  Calculate ratio of 2pt & 3pt correlation functions on lattice Extract GFF  LHPC, PRD68(2003)034505 Moments of GPD: Generalized Form Factors Polynomiality  X.Ji, J.Phys.G24(1998)1181

  11. Simulation parameters b k volume a [fm] mp[GeV] • Nf =2Wilson fermionsw/ clover improvement • # of config: • 400-2200for each(b,k) • Physical unit translated byr0c/a • O(a) improved operators • non-perturbative • renormalization into • MS @ m = 2 GeV 5.20 0.0856 163 32 〃 〃 〃 〃 0.13420 0.13500 0.13550 1.347 0.956 0.670 5.25 0.0794 0.13460 0.13520 0.13575 0.13600 1.225 0.949 0.635 0.457 243 48 〃 163 32 〃 5.29 0.0753 0.13400 0.13500 0.13550 0.13590 0.13620 0.13632 1.511 1.102 0.857 0.629 0.414 0.279 243 48 〃 〃 〃 323 64 5.40 0.0672 0.13500 0.13560 0.13610 0.13625 0.136400.13660 1.183 0.917 0.648 0.559 0.451 243 48 〃 〃 〃 〃 〃323 64 0.255

  12. cf. A10u-d from expt: p + e e' + p + + n V.Bernard et.al. J.Phys.G 28(2002)R1 Dipole form: A10  t dependence of Axial Form Factor  A10u+d (t) withb = 5.29,k = 1.3632 -t [GeV2]

  13.   A10u-d A10u+d B10u-d A20B20 gA 2 sq gP  xq 2 Jq-  xq  r 2A mp  mf2 ,ma2 ? ·DVCS - spin asymmetry - charge asymmetry ·nNscattering ·pion electroproduction ·muon capture GFF and physical quantities A10 B10u-d @ t = 0 Q Dk Slope, mpole  r 2EM  mV-2 ·eNscattering experiments Vector Meson Dominance ? PCAC & G-T relation Tensor Meson Dominance ?

  14.  0.402 0.024 (@ mp = .14GeV) Heavy Baryon Chiral Perturbation Theory M.Diehl, A.Manashov, A.Schäfer, EPJ.A 29(2006) Chiral extrapolation and quark spin  A10u+d (t=0) : 2 su+d= DSu+d Strongmp dependence by “chiral log” term • HERMES, PRD75(2007)012007  mp 2[GeV2]

  15. t dependence of the 2nd Moments A20u-d (t), B20u-d (t) andC20u-d (t) withb = 5.29,k = 1.3632 -t [GeV2]

  16. M.Dorati et.al. nucl-th/0703073 CTEQ6 @m 2 = 4GeV2  xu+d 0.563 0.014 (@ mp = .14GeV) Chiral extrapolation of A20u+d(t =0) A20u+d (t=0) mp 2[GeV2]

  17.  xu-d 0.193 0.004 (@ mp = .14GeV) Chiral extrapolation of A20u-d(t =0) A20u-d (t=0) Strongmp dependence by “chiral log” term  CTEQ6 @m 2 = 4GeV2 mp 2[GeV2]

  18.  3param. in each GFFs tdependence via Generalized Form Factors in Chiral Perturbation M.Dorati, T.A.Gail and T.R.Hemmert, nucl-th/0703073

  19. t  0  2 Jq-  xq in CQSM  Ju+d = 1/2  xu+d = 1 ) no dynamical gluon  K.Goeke et. al., PRC75(2007) in CQSM for comparison Dipole fit and forward limit of B20u,d(t ) B20q(t) -t [GeV2]

  20. B20u+d(t) and covariantized Baryon ChPT

  21. B20u+d (0) -0.120 0.023 (@ mp = .14GeV) Chiral extrapolation of B20u+d(0) B20u+d (0) Strongmp dependence by “chiral log” term mp 2[GeV2]

  22. B20u-d(t ) and covariantized Baryon ChPT

  23. B20u-d (0)0.269 0.020 (@ mp = .14GeV) Chiral extrapolation of B20u-d(0) B20u-d (0) mp 2[GeV2]

  24.  J u 0.226 0.009  J d -0.005 0.009 (@ mp = .14GeV) Chiral extrapolation of Ju ,Jd Ji’s sum rule :  J q = 1/2 [ A20q(0) +B20q(0) ] mp 2[GeV2]

  25.  J u+d 0.222 0.014  s u+d 0.201 0.024  L u+d 0.021 0.028 (@ mp = .14GeV) decomposition of quark angular momentum • Ju+d = 1/2 [ A20u+d (0) +B20u+d(0) ]  su+d = 1/2 A10u+d (0) ; Lu+d = Ju+d- s u+d  mp 2[GeV2]

  26. -t = (DE)2- [(pf+qf/ L) - (pi+qi/ L)]2  2p/L  Twisted boundary condition q(xk+L) = e iq kq(xk)

  27. Summary and outlook • Generaized Parton Distribution • spin content, transverse quark distribution, Form factors,… - accessible experimentaly viaDVCS - theoretical calculations in CQSM, Skyrme model,… • moments of GPD in lattice QCD -A20u-d and B20u+d have strong “chiral log” corrections. - Chiral extrapolation of A20(0) & B20(0)via BChPTnucl-th/0703073 leads •  J u 0.226 0.009 •  J d -0.005 0.009 • - lighter mp , larger volume (for t0), Finite size corrections, Continuum limit, disconnected diagram, …  J u+d 0.222 0.014  s u+d 0.201 0.024 (@ mp = .14GeV)  L u+d 0.021 0.028

More Related