1 / 32

The Four Planes of Symmetry

The Four Planes of Symmetry. Symmetry. A repeating pattern in a plane. A pattern is symmetric if there is at least one symmetry that leaves the pattern unchanged. Symmetries.

ouzts
Download Presentation

The Four Planes of Symmetry

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Four Planes of Symmetry

  2. Symmetry • A repeating pattern in a plane. A pattern is symmetric if there is at least one symmetry that leaves the pattern unchanged.

  3. Symmetries • In mathematics, the idea of symmetry gives us a precise way to think about this subject. We will talk about plane symmetries, those that take place on a flat plane, but the ideas generalize to spatial symmetries too.

  4. Types of Symmetry • Translation • Rotation • Glide Reflection • Reflection

  5. Translation

  6. Translation Properties • A translation is defined by its direction and/or distance. Two objects are symmetrical under translation if one can be superimposed on the other such that their edges match up perfectly.

  7. A translation • It is a shape that is simply translated, or slid, across the paper and drawn again in another place.  • It shows the geometric shape in the same alignment as the original; it does not turn or flip.

  8. Rotation To rotate an object means to turn it around. Every rotation has a center and an angle.

  9. Rotational Symmetry • Rotation is spinning the pattern around a point, rotating it. A rotation, or turn, occurs when an object is moved in a circular fashion around a central point (i,.e origin) which does not move.  • Formally, rotational symmetry is symmetry with respect to some or all rotations in m-dimensional Euclidean space. Rotations are direct isometries, i.e., isometries preserving orientation.

  10. Rotation

  11. Symmetrical object under Rotation • It appears the same when rotated about its center some fraction of 360 degrees. The most common types of rotational symmetries are 90 and 180 degree rotations, but others such as 45 and 60 also occur. For example, the number "6" is symmetrical to the number "9" under 180-degree rotation.

  12. Reflectional Symmetry • Reflection symmetry, line symmetry, mirror symmetry, mirror-image symmetry, or bilateral symmetry is symmetry with respect to reflection. • A type of symmetry in which one half of the object is the mirror image of the other. • In 2D there is a line of symmetry, in 3D a plane of symmetry. An object or figure which is indistinguishable from its transformed image is called mirror symmetric.

  13. Reflection Symmetry about a vertical line of reflection.

  14. The hexagon has reflectional symmetry about both horizontal and vertical lines of reflection.

  15. Related Terms for Reflectional Symmetry • Flip • Horizontal Line • Vertical Line • Mirror Symmetry • Reflection symmetry, line symmetry, mirror symmetry, mirror-image symmetry, or bilateral symmetry is symmetry with respect to reflection.

  16. Properties of Reflections Betweenness Angle measure  Distance --length or linear measure Reverse orientation Collinearity

  17. Collinearity the property of lying on a single line: Example: • The orthocenter, the circumcenter, the centroid, the Exeter point, and the center of the nine-point circle are collinear, all falling on a line called the Euler line.

  18. Solve a Problem The letter B has reflectional symmetry. Identify the list of other alphabets with similar reflection. Choices: • A, H, I, M, O, T, U, W, X, Y • C, D, E, H, I, O, X • F, G, J, L, Q, R, S, Z • A, C, D, E, H, I, K, M, O, T, U, X, Y

  19. Steps before the Solution • Step 1: A reflection flips the figure across a line. The new figure is a mirror image of the original figure.Step 2: The alphabet 'B' has horizontal reflection because half a figure is a mirror image of the other half.

  20. Solution • The other alphabets with similar reflection are C, D, E, H, I, O, X.

  21. Glide Reflection

  22. Glide Reflection • combination of two symmetries (reflection with a translation along the direction of the mirror line) • involves more than one step

  23. Glide Reflections

  24. In glide reflection, • Reflection and translation are used concurrently much like the following piece by Escher, Horseman. There is no reflectional symmetry, nor is there rotational symmetry.

  25. Tesselations • If you look at a completed tessellation, you will see the original motif repeats in a pattern. One mathematical idea that can be emphasized through tessellations is symmetry. • There are 17 possible ways that a pattern can be used to tile a flat surface or 'wallpaper'.

  26. Find the symmetry

  27. References • http://math.hws.edu/eck/math110_s08/symmetries/index.html • http://mathforum.org/sum95/suzanne/symsusan.html • http://www.csun.edu/~lmp99402/Math_Art/Tesselations/tesselations.html • http://www.ehow.com/info_8465413_different-kinds-symmetries-math.html

  28. Task 1: True or False? • Plane symmetry means a symmetry of a pattern in the Euclidean plane; that is, a transformation of the plane that carries any directioned lines to lines and preserves many different distances. • A pattern is symmetric if there is at least one symmetry that leaves the pattern changed. • In 2D and 3D there is a plane of symmetry. • An object or figure which is indistinguishable from its transformed image is called mirror.

  29. Task 2:Complete the gaps • An object that is symmetrical under reflection is the ………..of the other object. Objects with reflectional symmetry are categorized by the ……….of the axis of symmetry: vertical, horizontal or slant. For example, the letter "W" has reflectional symmetry with the letter "M" along a ………axis. • Rotation is …….the pattern around a point, rotating it. A rotation, or turn, occurs when an object is moved in a …………..around a central point which does not move.  • Symmetry under translation refers to simply moving the object horizontally, vertically or both ………rotating or reflecting it. A translation is defined by its direction and/or….. Two objects are symmetrical under translation if one can be ……….on the other such that their edges match up perfectly. It shows the geometric shape in the same a…….. as the original; it does not flip • ……reflection is the only type of symmetry that is a …...............of two symmetries. Two objects are symmetrical under glide reflection if one is a reflection of the other and is translated …………….the axis of symmetry.

  30. Task 4 Plane symmetry involves moving all points ….the plane so that their positions relative …. each other remain the same, although their absolute positions may change. Symmetries preserve distances, angles, sizes, and shapes. For example, rotation ….. 90 degrees ….. a fixed point is an example …. a plane symmetry. Another basic type of symmetry is a reflection. The reflection of a figure …. the plane ……..a line moves its reflected image ….where it would appear if you viewed it using a mirror placed …. the line. Another way …. make a reflection is to fold a piece of paper and trace the figure ……. the other side of the fold. A third type of symmetry is translation. Translating an object means moving it without rotating or reflecting it. You can describe a translation …… stating how far it moves an object, and …… what direction. The fourth (and last) type of symmetry is a glide reflection. A glide reflection combines a reflection …… a translation …….. the direction of the mirror line.

  31. Task 3: Dictogloss Step 1: Listen to the instructor reading a short text on the four planes of symmetry and take notes. Step 2: Reconstruct the text after comparing notes with a partner.

More Related