100 likes | 330 Views
Optické zobrazování. Optický obraz. Skutečný obraz. b) Zdánlivý obraz. Zobrazování jednou kulovou lámavou plochou. Paraxiální paprsky jsou paprsky, které svírají s optickou osou malé úhly. Paraxiální (Gaussův) prostor je prostor, ve kterém probíhá zobrazování paraxiálními paprsky.
E N D
Optické zobrazování Optický obraz • Skutečný obraz b) Zdánlivý obraz
Zobrazování jednou kulovou lámavou plochou Paraxiální paprsky jsou paprsky, které svírají s optickou osou malé úhly. Paraxiální (Gaussův) prostor je prostor, ve kterém probíhá zobrazování paraxiálními paprsky.
Zobrazovací rovnice pro jednu kulovou plochu v paraxiálním prostoru Gaussova zobrazovací rovnice Ze zobrazovací rovnice pro jednu kulovou plochu v paraxiálním prostoru dostaneme
Newtonova zobrazovací rovnice X F X´ F´ q´ q f´ f x´ x
= + = + ¢ ¢ ¢ x q f x q f ¢ f f + = 1 ¢ x x a
Odraz jako zvláštní případ lomu Srovnáme-li zákon odrazu a zákon lomu vidíme, že pokud můžeme z matematického hlediska považovat odraz za speciální případ lomu. Zobrazovací rovnice pro odraz na kulové ploše v paraxiálním prostoru
Odraz na rovinném zrcadle Zobrazovací rovnice pro odraz na rovinném zrcadle v paraxiálním prostoru
Obraz vytvořený rovinným zrcadlem je vždy zdánlivý, vzpřímený, stejně veliký jako předmět a souměrný s předmětem roviny zrcadla. Zobrazení kulovým zrcadlem Grafickou konstrukci budeme uskutečňovat pouze v paraxiálním prostoru, tímto omezením je zaručeno ideální optické zobrazení. Konkávní zrcadloKonvexní zrcadlo C F f S S F f C
Konkávní zrcadloKonvexní zrcadlo -chová se jako čočka spojná - chová se jako čočka rozptylná (všechny paprsky rovnoběžné s optickou (všechny paprsky rovnoběžné s optickou osou v paraxiálním prostoru se odrážejí osou se odrážejí tak, že vychází z bodu F) do společného F) svazek paprsků rovnoběžných s optickou svazek paprsků rovnoběžných s optickou osou je po odrazu svazkem sbíhavým osou je po odrazu svazkem rozbíhavým - konvergentním-divergentním FS = f = - r/2 FS = f = -r/2 (ohnisková vzdálenost je kladná, (ohnisková vzdálenost je záporná, poloměr křivosti záporný) poloměr křivosti kladný)