490 likes | 675 Views
LINGUISTICA GENERALE E COMPUTAZIONALE. CLASSIFICAZIONE DI TESTI. CLASSIFICAZIONE. Un CLASSIFICATORE e ’ una FUNZIONE da oggetti che si vogliono classificare a etichette Assegnare la parte del discorso a parole Assegnare valore SPAM/NO SPAM a email Positivo / negativo
E N D
LINGUISTICA GENERALE E COMPUTAZIONALE CLASSIFICAZIONE DI TESTI
CLASSIFICAZIONE • Un CLASSIFICATORE e’ una FUNZIONE daoggettichesivoglionoclassificare a etichette • Assegnare la parte del discorso a parole • Assegnarevalore SPAM/NO SPAM a email • Positivo / negativo • I variaspettidell’interpretazione del linguaggiocheabbiamovistonella prima lezione (disambiguazionedelleparti del discorso, analisisintattica, etc) possonoesseretuttivisti come problemidiclassificazione
ESEMPIO: DISAMBIGUAZIONE DELLE PARTI DEL DISCORSO COME CLASSIFICAZIONE • La disambiguazionedelleparti del discorso (POS tagging) puo’ essere vista come un classificatorechedeterminal’interpretazionepiu’ probabilediogniparola (nome, verbo, etc)
SENSES OF “line” • Product: “While he wouldn’t estimate the sale price, analysts have estimated that it would exceed $1 billion. Kraft also told analysts it plans to develop and test a line of refrigerated entrees and desserts, under the Chillery brand name.” • Formation: “C-LD-R L-V-S V-NNA reads a sign in Caldor’s book department. The 1,000 or so people fighting for a place in line have no trouble filling in the blanks.” • Text: “Newspaper editor Francis P. Church became famous for a 1897 editorial, addressed to a child, that included the line “Yes, Virginia, there is a Santa Clause.” • Cord: “It is known as an aggressive, tenacious litigator. Richard D. Parsons, a partner at Patterson, Belknap, Webb and Tyler, likes the experience of opposing Sullivan & Cromwell to “having a thousand-pound tuna on the line.” • Division: “Today, it is more vital than ever. In 1983, the act was entrenched in a new constitution, which established a tricameral parliament along racial lines, with separate chambers for whites, coloreds and Asians but none for blacks.” • Phone: “On the tape recording of Mrs. Guba's call to the 911 emergency line, played at the trial, the baby sitter is heard begging for an ambulance.”
UNA VISIONE GEOMETRICA DELLA CLASSIFICAZIONE SPAM NON-SPAM
IL RUOLO DELL’APPRENDIMENTO AUTOMATICO • Nellalinguisticacomputazionalemoderna, questiclassificatori non vengonospecificati a mano, ma vengono APPRESI AUTOMATICAMENTE a partiredaesempi.
CLASSIFICAZIONE PROBABILISTICA • Ad ognietichettae’ tipicamenteassociatauna PROBABILITA’ • Il classificatorepuo’ esseresviluppato a manoo APPRESO da (grandiquantita’ di) ESEMPI usandometodidi APPRENDIMENTO AUTOMATICO
POS TAGGER PROBABILISTICI • Un POS TAGGER e’ un classificatorechericeve come input informazionisullaparola (FEATURES) • UNIGRAM PROBABILITY: P(N|salto), P(V|salto) • AFFIXES (‘ing’, ‘ould’) • N-GRAM PROBABILITIES: P(NN|unsalto) • …. • Produce in output unaprobabilita’ • P(N|UProb,AFF,Nprob) = … • P(V|UProb,AFF,Nprob) = …
TIPI DI CLASSIFICATORI • SUPERVISIONATI (SUPERVISED) • Imparanodaesempietichettati • Modellanol’apprendimentotramiteinsegnanti • NON SUPERVISIONATI (UNSUPERVISED) • Scopronoda soli la struttura del problema • Modellanol’apprendimento del linguaggio • SEMI-SUPERVISED • Ricevono come input pochiesempi poi procedono per somiglianza
SUPERVISED CLASSIFICATION FOR POS TAGGING • L’algoritmodiapprendimentoriceve come input un corpus di TRAINING classificato con POS tags • La/Art gatta/N fece/V un/Art salto/N ./. • Giuseppe/PN e’/V matto/Adj ./. • Si estrae le features / calcola le probabilita’ • Costruisce un MODELLO chepuo’ poi essereusato per classificare ALTRI testi
METODI PER L’APPRENDIMENTO • DECISION TREES • NAÏVE BAYES
NAÏVE BAYES • MetodiBayesiani: decisionesuclassificazionebasatasu • un modello PROBABILISTICO • checoniugausodiinformazioni A PRIORI ed A POSTERIORI come nellaregoladiBayes • Metodi NAÏVE BAYES: sifannoassunzionichesemplificano molto ilcalcolodelleprobabilità
Bayesapplicataallaclassificazioneditesti P(Classe|Proprietà) = P(Proprietà|Classe)*P(Classe) /P(Proprietà)
Naive Bayes Classifiers Task: Classify a new instance based on a tuple of attribute values
Naïve Bayes Classifier: Assumptions • P(cj) • Can be estimated from the frequency of classes in the training examples. • P(x1,x2,…,xn|cj) • O(|X|n•|C|) • Could only be estimated if a very, very large number of training examples was available. Conditional Independence Assumption: Assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities.
Flu X1 X2 X3 X4 X5 runnynose sinus cough fever muscle-ache The Naïve Bayes Classifier • Conditional Independence Assumption: features are independent of each other given the class:
C X1 X2 X3 X4 X5 X6 Learning the Model • Common practice:maximum likelihood • simply use the frequencies in the data
Flu X1 X2 X3 X4 X5 runnynose sinus cough fever muscle-ache Problem with Max Likelihood • What if we have seen no training cases where patient had no flu and muscle aches? • Zero probabilities cannot be conditioned away, no matter the other evidence!
Smoothing to Avoid Overfitting # of values of Xi overall fraction in data where Xi=xi,k • Somewhat more subtle version extent of “smoothing”
Using Naive Bayes Classifiers to Classify Text: Basic method • Attributes are text positions, values are words. • Naive Bayes assumption is clearly violated. • Example? • Still too many possibilities • Assume that classification is independent of the positions of the words • Use same parameters for each position
ESEMPIO DI CLASSIFICAZIONE: DOCUMENT CLASSIFICATION (NLTK book, p. 227-228)
VALUTAZIONE • ACCURACY: percentualedirispostecorrette • Nelcasodiproblemi in cui la classediinteresserappresentaunapercentuale minima del totale: PRECISION e RECALL
ESEMPIO DI CLASSIFICAZIONE: GENDER IDENTIFICATION (NLTK book, p. 222-227)
APPRENDERE DECISION TREES • Top-down: dato un certoinsiemediesempi, trovare la proprieta’ chepermettedidividerli in sottogruppipiu’ COERENTI • Poi siprocedericorsivamente • Sceltadellaproprieta’: INFORMATION GAIN
Top-down DT induction • Partition training examples into good “splits”, based on values of a single “good” feature: (1) Sat, hot, no, casual, keys -> + (2) Mon, cold, snow, casual, no-keys -> - (3) Tue, hot, no, casual, no-keys -> - (4) Tue, cold, rain, casual, no-keys -> - (5) Wed, hot, rain, casual, keys -> +
Top-down DT induction keys? yes no Drive: 1,5 Walk: 2,3,4
Top-down DT induction • Partition training examples into good “splits”, based on values of a single “good” feature (1) Sat, hot, no, casual -> + (2) Mon, cold, snow, casual -> - (3) Tue, hot, no, casual -> - (4) Tue, cold, rain, casual -> - (5) Wed, hot, rain, casual -> + • No acceptable classification: proceed recursively
Top-down DT induction t? cold hot Walk: 2,4 Drive: 1,5 Walk: 3
Top-down DT induction t? cold hot Walk: 2,4 day? Sat Wed Tue Drive: 1 Walk: 3 Drive: 5
Top-down DT induction t? cold hot Mo, Thu, Fr, Su Walk: 2,4 day? Sat Wed Tue Drive: 1 Walk: 3 Drive: 5 ? Drive
Selezionedellaproprieta’ • La sceltadellaproprieta’ dausare per dividerel’insiemecorrente in sottinsiemipiu’ coerentisibasasu un criteriodi RIDUZIONE DEL DISORDINE basatosullanozionedi ENTROPIA
Entropy and Decision Trees keys? E(S)=-0.6*lg(0.6)-0.4*lg(0.4)= 0.97 no yes Walk: 2,4 Drive: 1,3,5 E(Sno)=0 E(Skeys)=0
Entropy and Decision Trees t? E(S)=-0.6*lg(0.6)-0.4*lg(0.4)= 0.97 cold hot Walk: 2,4 Drive: 1,5 Walk: 3 E(Scold)=0 E(Shot)=-0.33*lg(0.33)-0.66*lg(0.66)= 0.92
Information gain • For each feature f, compute the reduction in entropy on the split: Gain(S,f)=E(S)-∑(Entropy(Si)*|Si|/|S|) f=keys? : Gain(S,f)=0.97 f=t?: Gain(S,f)=0.97-0*2/5-0.92*3/5=0.42 f=clothing?: Gain(S,f)= ?
TEXT CATEGORIZATION WITH DT • Build a separate decision tree for each category • Use WORDS COUNTS as features
Reuters Data Set (21578 - ModApte split) • 9603 training, 3299 test articles; ave. 200 words • 118 categories • An article can be in more than one category • Learn 118 binary category distinctions • Earn (2877, 1087) • Acquisitions (1650, 179) • Money-fx (538, 179) • Grain (433, 149) • Crude (389, 189) Common categories (#train, #test) • Trade (369,119) • Interest (347, 131) • Ship (197, 89) • Wheat (212, 71) • Corn (182, 56)
AN EXAMPLE OF REUTERS TEXT Foundations of Statistical Natural Language Processing, Manning and Schuetze
Decision Tree for Reuter classification Foundations of Statistical Natural Language Processing, Manning and Schuetze