1 / 72

Um pouco mais sobre modelos de objetos

Um pouco mais sobre modelos de objetos. Ray Path Categorization. Ray Path Categorization . Nehab, D.; Gattass, M. Proceedings of SIBGRAPI 2000, Brazil, 2000, pp. 227-234. Ray Path Categorization.   -. Curvas e Superfícies. modelagem paramétrica. y. y'. x'. x.

paley
Download Presentation

Um pouco mais sobre modelos de objetos

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Um pouco mais sobre modelos de objetos

  2. Ray Path Categorization Ray Path Categorization.Nehab, D.; Gattass, M.Proceedings of SIBGRAPI 2000, Brazil, 2000, pp. 227-234.

  3. Ray Path Categorization   -

  4. Curvas e Superfícies modelagem paramétrica

  5. y y' x' x Requisitos: Independência de eixos

  6. y x Requisitos: Valores Múltiplos

  7. Requisitos: Controle Local y x

  8. Requisitos: Redução da Variação polinômio de grau elevado

  9. Requisitos: Continuidade Variável

  10. Requisitos: Versatilidade

  11. Finalizando: Formulação matemática tratável Requisitos: Amostragem Uniforme Dsn Ds3 Ds2 Ds4 Ds1 DsiDsj

  12. t=1 t=0 t=0 t=0 t=1 t=1 u1 u0 u2 un Solução Curva representada por partes através de polinômios de grau baixo (geralmente 3) t=1 t=0 Parametrização

  13. z V2 Vn-1 t=1 V1 Vn t=0 V3 P(t) V0 y x Curvas de Bézier P. de Casteljau, 1959 (Citroën) P. de Bézier, 1962 (Renault) - UNISURF Forest 1970: Polinômios de Bernstein onde: pol. Bernstein coef. binomial

  14. Bézier Cúbicas z V1 V3 P(t) V0 V2 y x

  15. B0,3 B1,3 1 (1-t)3 3(1-t)2t 3 0 0 1 1 t t B3,3 B2,3 1 3(1-t)t2 t3 -3 0 1 t B0,3 +B1,3 +B2,3 +B3,3 0 1 t 1 0 1 t Polinômios Cúbicos de Bernstein

  16. R(0) z V1 V3 P(t) V0 V2 y x R(1) Propriedades da Bézier Cúbica

  17. Controle da Bézier Cúbica

  18. Redução de n=3 para n=2 Bezier n=2

  19. Redução de n=2 para n=1 Bezier n=1

  20. (1-t) t Cálculo de um Ponto Mostre que:

  21. Subdivisão de Bézier Cúbicas . . .

  22. Construção de uma Bezier u=1/2 P(1/2)

  23. Introduction toSubdivision Surfaces Adi Levin

  24. Subdivision Curves and Surfaces • Subdivision curves • The basic concepts of subdivision. • Subdivision surfaces • Important known methods. • Discussion: subdivision vs. parametric surfaces.

  25. Corner Cutting

  26. Corner Cutting 3 : 1 1 : 3

  27. Corner Cutting

  28. Corner Cutting

  29. Corner Cutting

  30. Corner Cutting

  31. Corner Cutting

  32. Corner Cutting

  33. A control point The limit curve The control polygon Corner Cutting

  34. The 4-point scheme

  35. The 4-point scheme

  36. The 4-point scheme 1 : 1 1 : 1

  37. The 4-point scheme 1 : 8

  38. The 4-point scheme

  39. The 4-point scheme

  40. The 4-point scheme

  41. The 4-point scheme

  42. The 4-point scheme

  43. The 4-point scheme

  44. The 4-point scheme

  45. The 4-point scheme

  46. The 4-point scheme

  47. The 4-point scheme

  48. The 4-point scheme

  49. The 4-point scheme A control point The limit curve The control polygon

  50. Subdivision curves • Non interpolatory subdivision schemes • Corner Cutting • Interpolatory subdivision schemes • The 4-point scheme

More Related