1 / 26

Nuovi algoritmi di b tagging

Nuovi algoritmi di b tagging. Alessia Tricomi Università and INFN Catania. TISB – Firenze 15-16 Gennaio 2003. Alcune considerazioni sullo stato dei tools. Cosa c’è di pronto Track counting e Probabilistico a “la ALEPH” già inseriti da Gabriele nel suo framework Nuovi algoritmi “stand alone”

pali
Download Presentation

Nuovi algoritmi di b tagging

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Nuovi algoritmi di b tagging Alessia Tricomi Università and INFN Catania TISB – Firenze 15-16 Gennaio 2003

  2. Alcune considerazioni sullo stato dei tools • Cosa c’è di pronto • Track counting e Probabilistico a “la ALEPH” già inseriti da Gabriele nel suo framework • Nuovi algoritmi “stand alone” • Likelihood ratio • Implementazione • Primi risultati mostrati durante la CMS Week di Dicembre • Leptonico • Idea • Implementazione • Problemi • Cosa serve • C’è un framework sviluppato da Gabriele che integra già alcuni algoritmi (vedi presentazione di Gabriele) in cui però bisogna integrare i nuovi algoritmi ed eventualmente renderlo più flessibile • Occorre un pacchetto semplice e user friendly per la calibrazione degli algoritmi probabilistici

  3. Cosa vi mostro ora? • Un riassunto del Likelihood Ratio con i primi risultati • Uno schema del btagging con leptoni • Una discussione sui problemi Rimandiamo la discussione su cosa serve e come farlo alla fine delle presentazioni…

  4. Linearised track Jet Helix Pa PV do The main idea • b-jet tagging made exploiting long lifetime of b: • the algorithm relies on tracks with large impact parameter • Both transverse and 3D IP have been used • A probabilistic approach is used • Sign is positive if track appears to originate in front of PV • Negative if it appears to originate from behind Significance of IP is defined as the ratio of the signed IP to its total error: sign x |d0|/s(d0) (take better in account experimental resolutions)

  5. Probabilistic algorithms • Tracksfrom b hadron decays have usually LARGE and POSITIVE IP • Tracks coming from the PV and badly reconstructed tracks have a 50% chance to be assigned a negative significance • Tracks with negativeIP dused however to measure the intrinsic resolution(due to limitedresolution on track reconstruction, primary vertex finding, b-jet reconstruction) • Confidence level that a track with IP significance SD originates from the primary vertex given by: • By construction the C.L. is flat for tracks coming from primary vertex while is peaked at small values for tracks coming from displaced vertices

  6. Probabilistic algorithms • Starting from the C.L. the probability that a set of tracks is coming from the PV can be evaluated • In the Likelihood ratio method however both bkg and signal information are used: • b-jet to bkg-jet ratio: builds a global likelihood ratio based on the distributions of SD expected for b-jets and bkg (gluon or uds) jets. The sum over all selected tracks of lg(ratio) provides discrimination between jets wich contain long-lived particles and those which do not.

  7. Likelihood ratio: the method Main step of the method: • For each track i in a jet the significance Si is evaluated • The ratio of the significance probability distribution functions for b and u-jets is computed: ri= fb(Si)/ fu(Si) • A jet weight is constructed from the sum of logarithms of the ratio: W=Slog ri • By keeping jets above some value of W, the efficiency for different jet samples can be obtained • The rejection will have to be optimised for each specific bkg under study • Several track quality cuts applied

  8. Samples & Track Selection • Monte Carlo samples: • bb, cc and uu events • Jet Transverse Energies: 50, 100 and 200 GeV • |h| intervals considered: • |h| < 0.7 • 0.7 < |h| < 1.4 • 1.4 < |h| < 2.0 • 2.0 < |h| < 2.4 • Track selection (ORCA_6_1_1): • Forward Kalman Filter used for track reconstruction • Tracks with p > 1 GeV • Tracks inside the jet within a DR<0.4 cone size • At least 8 hits per track • At least 3 hits in the pixel • To reject g conversions, L and KS decays, Transverse IP < 2 mm

  9. Track quality classes • IP measurements depend on momentum and number of hits in the different kind of detectors 8 Quality track classes defined: Nhit  8 • h0.7 • p < 5 • p > 5 • 0.7 < h 1.4 • p < 10 • p > 10 • 0.7 < h 1.4 • p < 15 • p > 15 • 0.7 < h 1.4 • p < 20 • p > 20

  10. First step: resolution function calibrations • Resolution function dominated by Gaussian term+exponential terms (effects not taken into account in the error estimate, secondary interactions with the material and lifetime) bb ET=100 GeV h0.7 p < 5 p > 5 0.7 < h 1.4 p < 10 p > 10

  11. First step: resolution function calibrations bb ET=100 GeV 1.4 < h 2.0 p < 15 p > 15 2.0 < h 2.4 p < 20 p > 20

  12. First step: resolution function calibrations cc ET=100 GeV h0.7 p < 5 p > 5 0.7 < h 1.4 p < 10 p > 10

  13. First step: resolution function calibrations cc ET=100 GeV 1.4 < h 2.0 p < 15 p > 15 2.0 < h 2.4 p < 20 p > 20

  14. First step: resolution function calibrations uds ET=100 GeV h0.7 p < 5 p > 5 0.7 < h 1.4 p < 10 p > 10

  15. First step: resolution function calibrations uds ET=100 GeV 1.4 < h 2.0 p < 15 p > 15 2.0 < h 2.4 p < 20 p > 20

  16. Likelihood ratio: distribuzione Wjet ORCA 6.1.1

  17. Likelihood ratio: performances Preliminary: calibration to optimize Mistag = 5% eb70%,eb65%* Mistag = 10% eb80%,eb72%* Mistag = 20% eb85%,eb78%* * DAQTDR

  18. Likelihood ratio: performances 1.4 < h 2.4 ex

  19. Likelihood ratio: performances |h| 1.4 ex

  20. Likelihood ratio: performances 1.4 < |h| 2.4 ex

  21. Likelihood ratio: performances |h| 1.4 ex

  22. Likelihood ratio: performances 1.4 < |h| 2.4 ex

  23. Conclusions • Performances seem interesting • Results are very preliminary • 3D performances still need to be studied • More statistics needed for calibration • Staged scenario need to be studied • New ORCA should be used • Rejection need to be optimized for each specific bkg under study

  24. b tagging con i leptoni: idea • La presenza di leptoni soft provenienti dai decadimenti semileptonici dei mesoni B può essere utilizzata per taggare i jet di b • L’efficienza del soft lepton tagging è limitata dalla frazione di decadimenti semileptonici dei B ( 17%) • Leptoni di segnale in b-jets: • Decadimenti diretti: b l • Decadimenti in cascata: b cl • Decadimenti leptonici della J/y : b J/yl • Decadimenti di adroni b in t e poi in l: b tl • Electroni di fondo: • Conversioni g • Decadimenti Dalitz di p0 • Decadimenti semileptonici in cascate di adroni • Muoni di fondo: • Muoni da decadimenti di K e p • Particelle misidentified in jet contenenti muoni reali • (muoni di basso pT ) particelle estrapolate alle camere per muoni con depositi di energia compatibili con muoni

  25. b tagging con i leptoni: realizzazione • Primo approccio: per ora solo con i muoni • Ricostruire i jet, guardare alle tracce del jet, ricostruire i muoni di L3 e fare un match traccia-muone • Secondo approccio: • Ricostruire tutti i muoni di L2 • Per i muoni di L2 all’interno del cono del jet ricostruire i muoni di L3  in questo modo si ricostruiscono solo le tracce compatibili con i muoni • Ma… PROBLEMA!!! • La ricostruzione dei muoni e l’uso della libreria bTauJetTools sembrano incompatibili! Basta includere questa libreria perché la RecCollection dei muoni risulti vuota! • Il prossimo step: • innanzitutto occorre risolvere il problema muoni-bTauJet • Fatto questo la realizzazione dell’algoritmo dovrebbe essere abbastanza rapida. Uno schema di algoritmo è già pronto

  26. Conclusioni Ne parliamo dopo…

More Related