1 / 40

Hadron spectroscopy at Belle

Hadron spectroscopy at Belle. J olanta Brodzicka (Krakow) Hadron Workshop, Nagoya 6-7 December 2008. Belle at KEKB. KEKB: a symmetric e + e - collider e + : 3.5 GeV  e - : 8.0 GeV √s= 10.58 GeV =  (4S) mass e + e -  (4S)  B B Operating since 1999

Download Presentation

Hadron spectroscopy at Belle

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Hadron spectroscopy at Belle Jolanta Brodzicka (Krakow) Hadron Workshop, Nagoya 6-7 December 2008

  2. Belle at KEKB • KEKB:asymmetric e+e- collider e+: 3.5 GeV  e-: 8.0 GeV √s=10.58 GeV = (4S) mass e+e-  (4S)  BB • Operating since 1999 • Peak luminosity: 1.711034cm-2s-1 • Integrated luminosity: 860 fb-1 750 fb-1 @ (4S) ~ 780 * 106 BB ~ 960 * 106 cc Beauty and Charm Factory

  3. History of spectroscopy at Belle X(3872) Z(3930) Ξc(3077) Ξc(2980) Z+(4430) Y(3940) D*0 D*2 DsJ(2700) 2002: ηc’→KsKπ X(3872) →J/ψπ+π- D*0(2308)→Dπ and D1’(2420)→D*π properties of D*s0(2317) and Ds1(2460) Y(3940)→J/ψω Z(3930)=χc2’→DD X(3940)→DD* Ξc(2980) Ξc(3077)→ΛcKπ Y family→ψ(1S,2S)π+π- DsJ+(2700) →D0K+ X(4260)→DD* Z+(4430)→ψ(2S)π+ Z+(4051) Z+(4281)→χc1π+ 2008: Yb(?)→Yπ+π- cc-like XYZ states : exotics? I will focuse on them

  4. Conventional vs exotic states q q q q q • Quark Model by Gell-Manna and Zweiga (1964): (qq) mesons and (qqq) baryons = conventional states • QCD based potential models → hadron masses, decays,... Observed cc multiplets agree with the models’ predictions • States more complex than qq or qqq =exotics also predicted by the models • cc spectrum „cleaner” than uu/dd/ss → cc-like exotics easier to identify 2M(D)

  5. Menu of cc-like exotics c g q c c q c q c π q c D D(*) • Hybrids: cc+ excited gluon(excited flux-tube) • Lattice QCD: lightest hybrids @ 4.2GeV • Exotic quantum numbers JPC= 0+-, 1-+, 2+-… • Γ(H→DD**)> Γ(H→DD(*) ) • Large Γ(H→ψππ, ψω,… ) • Tetraquarks: diquark-antidiquark [cq][cq] • Tightly bound diquarks (gluon exchange) • Decay:„coloured” quarks rearrange into „white” mesons → dissociation • Molecules: M(cq)M(cq) • Meson and antimeson loosely bound (pion exchange) • Decay: dissociation into constituent mesons • How to identify exotic cc hadron? • JPC forbidden for conventional cc • Final states with non-zero electric charge and/or strangness: • J/ψπ- =(cc)(ud) Ds+D- =(cs)(cd) • Too small/large rates in some decay modes

  6. Recently observed cc-like states

  7. Production of ccin B Factory b c u, dc s u, d c γ* c c c e+ J/ψ X e- BX=ηcχcψ… W K e+ e+ e- e- γ γ γISR γ* X π π ψ D D X e+ e- • double cc production • e+e-→J/ψXcc • γγ collision • e+e-→γγ→Xcc→DD • B meson decays: B→XccK(BF~10-3) • initial state radiation (ISR) e+e-→γISRXcc→γISRψππ Good experimental environment to search for new resonances JPC(X)=0++, 0-+ J(X)=0, 2 C(X)=+1 JPC(X)=1--

  8. Observation of Z+(4430)→ψ’π+ Mbc ΔE M=4433±4±2MeV Γ=45 MeV +18 +30 –13 -13 ??? Z+(4430) M2(ψ’π+) N=121±30 (6.5σ) K2*(1430) K*(890) M(ψ’π+) M2(Kπ+) PRL100, 142001 (2008) • Study of B→ψ’π+K using 657M BB • ψ’→e+e-, μ+μ-, J/ψπ+π- • after • K* veto Too low statistic to determine JP • First charged cc-like state!Must be exotic! • Proposed interpretations: • [cu][cd] tetraquark;neutral partner in ψ’π0 expected • D*D1(2420)molecule;should decay to D*D*π

  9. No significant Z+(4430) in Babar hep-ex/0811.0564 • B→ψ’π+K studied using413/fb • Mass spectra corrected for efficiency

  10. B→ψ’π+KDalitz plot analysis A B C D E A B C D E M2(ψ’π+) A+C+E =K*veto M2(K-π+ ) M2(ψ’π+) M2(ψ’π+) • B→ψ’π+K amplitude: coherent sumof Breit-Wigner contributions • Maximum likelihood fit to Dalitz plot • Models: all known K*→Kπ+ resonances only all known K*→Kπ+ resonances and Z→ψ’π+favored by data Z+(4430) confirmed Significance: 6.4σ Fit CL: 36%

  11. B0→χc1π+K- study. More Z’s ΔE M(J/ψγ) ??? M2(χc1π+) K2*(1430) K*(1680) K*(892) K0*(1430) K3*(1780) M2(K-π+ ) PRD 78, 072004 (2008) • Dalitz-plot analysis of B0→χc1π+K- χc1 →J/ψγwith 657M BB • B0→χc1π+K- amplitude: coherent sum • of Breit-Wigner contributions • Maximum likelihood fit performed • Models tried: • known K*’s→Kπ only • K*’s + one Z→χc1π+ • K*’s + two Z states : favored by data

  12. Z+1,2→χc1π+ exotic states • Model with two Z’s significantly favored by data • Spin of Zstatesnot determined: spin 0 and 1givesimilarfit qualities M(χc1π+) for 1<M2(K-π+)<1.75GeV –̶̶̶̶̶̶ –̶̶̶̶̶̶fit for null model –̶̶̶̶̶̶ –̶̶̶̶̶̶fit for double Z model –̶̶̶̶̶̶ –̶̶̶̶̶̶Z1 contribution –̶̶̶̶̶̶ –̶̶̶̶̶̶Z2 contribution Non-zero charge suggests multiquark interpretation of Z1 and Z2

  13. cc-like example: X(3872) 152M BB M(J/ψπ+π-) M(π+π-) 117MBB PRL91, 262001 (2003) • X(3872)→J/ψπ+π- observed in B+→X(3872)K+ by Belle • Confirmed by BaBar, CDF, D0 • mX=3871.2±0.5MeVmX-(mD*0+mD0)=-0.6±0.6MeVΓ<2.3MeV • M(π+π-) suggests X(3872)→J/ψρ (S- or P-wave) • Other decay modes: J/ψγ,ψ(2S)γ, J/ψω, DD*, no X→DD • JPC= 1++,2-+favored (from angular analysis by CDF, M(π+π-),decay modes)

  14. What is X(3872) ? M(J/ψπ-π0) • cc? No obvious assignment • D0D*0 molecule? Non-trivial line shape Γ(X→DD*)>Γ(X→J/ψππ) Production in B0 suppressed in regard to B+ • 4-quark? Xu[uc][uc] Xd[dc][dc] Different mass of X produced in B0 and B+ Finding charged X is critical (no evidence so far) Braaten et al. hep-ph/0710.5482 PRD71, 031501 (2005) Maiani, Polosa et al. PRD 71, 014028 (2005)

  15. X(3872)in B+vs B0 decays B0→XK0 Ns=30±7 (6.5σ) B+→XK+ Ns=125±14 (12σ) First observation! 657MBB M(J/ψπ+π-) M(J/ψπ+π-) hep-ex/0809.1224 • Study of X(3872)→J/ψπ+π-inB+→XK+ and B0→XK0s • Similar properties of X(3872) from B+ and B0 decays

  16. X(3872)→D0D*0 (?) N=33±7 (4.9σ) PRD77, 011102(2008) B KD0D*0 D*→Dγ M(X)=3875.1+0.7-0.5 ±0.5MeV Γ=3.0+1.9-1.4 ± 0.9 MeV Preliminary D*→D0π0 605 fb-1 Flatte vs BW similar result: 8.8σ • X(3872)→D*0D0in B+→D*0D0K • New Belle M(X) measurement ruled out • scenario oftwo states: X(3872)→J/ψππand X(3875)→D*D hep-ex/0810.0358 M(X)=3872.6+0.5-0.4±0.4MeV Γ=3.9+2.5-1.3+0.8-0.3 MeV Maiani, Polosa et al. hep-ph/0707.3354 Xu[uc][uc]→D0D0π0= X(3875) Xd[dc][dc]→ J/Ψππ = X(3872)

  17. X(3940) and X(4160) in e+e-→J/ψXcc c γ* c c c e+ J/ψ X e- ee→J/ψDD* X(3940) 6.0σ ee→J/ψD*D* X(4160) 5.5σ M=4156 ± 15 MeV =139 ± 21 MeV +25 –20 M =3942 ± 6 MeV =37 ± 12 MeV +7 –6 M(D*D) M(D*D*) +111 – 61 +26 –15 PRL100, 202001 (2008) • x-sections much larger than QCD predicted → factory of 0++ and 0-+ charmonia • Search for X→DD* and D*D* ine+e-→J/ψD(*)D* • Possible assignments: ηc(3S) ηc(4S) (but X masses ~100-150MeV above predictions for ηc’s) CX=+1 so X(4160)≠ψ(4160)

  18. Y family through ISR M=4259 ± 8 MeV =88 ± 23 MeV +2 –6 +6 –4 γISR γ* π π ψ Y e+ e- PRL 95, 142001 (2005) for 232fb-1 PRL 98, 212001 (2007) for 298fb-1 • ISR gives access to JPC=1-- states • Hard photon emission suppressed, • ‘compensated’ by high luminosity of B-factory Y(4260)→J/ψππ M=4324 ± 24 MeV =172 ± 33 MeV Y(4360)→ψ’ππ PRD74, 091104 (2006) PRL 96, 162003 (2006) for 13pb-1@4.26GeV

  19. 1 - - Y→ψππ states via ISR e+e-→p+p-J/y • Y(4008), Y(4260), Y(4360), Y(4660) • More 1– states than empty slots in cc spectrum Unusual properties: • Large widths for ψππ transition: unlike for conventional cc • Above DD threshold but don’t match the peaks in D(*)D(*) x-sections Other options: • DD1 or D*D0 molecules • cqcq tetraquarks • ccg hybrid: DD1decay mode should dominate • Coupled-channel effects • Charm-meson threshold effects Y(4260) Y(4008) e+e-→p+p-y’ Y(4360) Y(4660)

  20. Exclusive x-sections with ISR PRD77,011103(2008) DD ? DD* (4160) Y(4350) PRL98, 092001 (2007) Y(4008) D*D* Y(4260) (4415) (4040) PRL100,062001(2008) Y(4660) DDπ arXiv:0807.4458 Λc+Λc– NEW PRD 77, 011103 (2008) for 673fb-1 PRL 98, 092001 (2007) for 548fb-1 • Difficult interpretation in terms of resonances (model dependent coupled-channel and threshold effects…) PRL 100, 062001 (2008) for 673fb-1

  21. cc (-like) state of art Y(3360), Y(3660) ηc(4S) • We have observed a few new states • Most of them don’t match cc spectrum

  22. bbanalog of Y(4260)? PRL100, 112001(2008) • If bb follows the ccpattern: Yb→Y(nS)ππ with large partial width • Study of Y(mS)→Y(nS)π+π-with dataat Y(5S)~10.87GeV(21.7/fb) • Energy scan around Y(5S) (7.9/fb) • Large Γ(Y(5S)→Y(nS)ππ)! For other bb states: Γ~O(keV) • Is it Yb? Mixture of Y(5S) and Yb? Observed shape disagree with Y(5S) hypothesis (fit). Yb at 10.89GeV?

  23. Summary • New charmonium spectroscopy @4GeV • Candidates for exotic hadrons observed: Z+(4430)→ψ’π+Z+(4050), Z+(4248)→χc1π+ • Many other states await understanding X(3872) Y(3940) Y-family… • Yb? New spectroscopy also in b quark sectors? • Theory input needed (models to verify, threshold effects, coupled channel effects)

  24. Backup

  25. J. Brodzicka @ PIC08

  26. J. Brodzicka @ PIC08

  27. X(3872)→D0D*0 (?) N=24±6 (6.4σ) N=33±7 (4.9σ) PRD77, 011102(2008) M(X)=3875.1+0.7-0.5 ±0.5MeV Γ=3.0+1.9-1.4 ± 0.9 MeV • Belle: B+→D0D0π0K(447MBB) BaBar: B+→D*0D0K (383MBB) • Mass ~4σ above M(X) for X→J/ψππ • Is this X(3872) or are theretwo states X(3872) and X(3875)? • More precise measurement of mass/width/line shape needed PRL97, 162002(2006) M(X)=3875.4± 0.7+0.4-1.7 ±0.9MeV Xu[uc][uc]→D0D0π0 = X(3875) Xd[dc][dc]→ J/Ψπ+π- = X(3872) Maiani, Polosa et al. hep-ph/0707.3354

  28. Y(3940)→J/ψω K*’s Y(3940) M(ωJ/ψ) M(ωJ/ψ) M2(ωJ/ψ) M2(ωK) Belle PRL 94, 182002 (2005) Babar hep-ex/0711.2047 submitted to PRL • Study of B→ KJ/ψωω→π+π-π0 • Mbc, ΔE and M(π+π-π0) selection mass/width discrepancy needs further study • Y(3940) above DD threshold but has large cc transition • Candidate for cc-gluon hybrid?(but hybrids predicted >4GeV) • Re-scattering DD*→J/ψω? BF(B→KY)*BF(Y→J/ψω)= Belle (7.1±1.3±3.1)*10-5 Babar (4.9±1.0±0.5)*10-5

  29. X(3940)→DD* and X(4160)→D*D* Mrec(J/ψD) DD*D*π Mrec(J/ψD*) DD* ee→J/ψDD* X(3940) 6.0σ ee→J/ψD*D* X(4160) 5.5σ M=4156 ± 15 MeV =139 ± 21 MeV +25 –20 M =3942 ± 6 MeV =37 ± 12 MeV +7 –6 M(D*D) M(D*D*) +111 – 61 +26 –15 PRL100, 202001 (2008) • Reconstruct J/ψ and one D(*),associatedD(*) seen as peak inMrecoil(J/ψD(*)) • Possible assignments: ηc(3S) ηc(4S) (but X masses ~100-150MeV above predictions for ηc’s) CX=+1 so X(4160)≠ψ(4160)

  30. Y→J/ψππ via ISR Y(4260) Y(4008) PRL 99, 182004 (2007) • Study of e+e-→J/ψπ+π- γISR(548 fb-1) • J/ψ→ee, μμ + ππ; no extra tracks • ISR photon is not detected • Missing mass used to identify process • Y(4260) confirmed • Y(4008) resonance? Re-scattering from DD*? Coupled-channel effect?

  31. Y→ψ’ππ via ISR PRL 99, 142002 (2007) • Study of e+e-→ψ’π+π- γISR(673 fb-1) • ψ’→J/ψππ, J/ψ→ee, μμ + ππ • no additional tracks allowed • γISR not detected • Two significant peaks in M(ψ’ππ): one close to Babar’s Y(4360) but narrower • M(ψ’ππ)fitted with two coherent Breit-Wigners Y(4360) Y(4660)

  32. x-sections for e+e-→ψππ J/ψπ+π- ψ’π+π- • ISR allows us to measure hadronic x-sections in wide energy range: model independent measurement • M(ψππ): background subtracted, corrected for efficiency and luminosity → Cross-section for e+e-→ψπ+π-

  33. B0 →X(3872)K+π– BELLE-CONF-0849 5σ first observation X(3872) sideband X(3872)→J/ψπ+π– non-resonant Kπ K*0→Kπ Mass(Kπ) Br(B0→X(K+π–)non_res) Br(X→J/ψπ+π–) = (8.1±2.0+1.1–1.4)10–6 dominates ! unlike B→K”cc” Br(B0→XK*0)Br(X→J/ψπ+π–) < 3.4x10–6 90% CL ─ Br(B0→X(K+π–)non res) Br(B0→XK0s) ~1 ICHEP2008 Galina Pakhlova, ITEP

  34. B→J/γK & B→(2S)γK evidence NEW B0→XK0s 3.5σ B±→XK± confirmation X(3872)→(2S)γ 3.6σ B0→XK0s B0→XK*0 B±→XK*± B±→XK± X(3872)→J/γ B0→XK*0 B±→XK*± Relatively large Br(X→(2S)γ) is inconsistent with a pure D0D*0 molecular interpretation for X(3872) Favors cc - D0D*0 mixing models ─ ─ ─ K = K, K0s, K*(892) 424fb–1 Br(B±→XK±)Br(X→J/γ) = (2.8±0.8±0.2)10–6 Br(B±→XK±)Br(X→(2S)γ) = (9.9±2.9±0.6)10–6 Br(X→(2S)γ) / Br(X→J/γ) = 3.5 ± 1.4 Br(X→(2S)γ) / Br(X→J/π+π–) = 1.1 ± 0.4 HQ session: Arafat G.Mokhtar ICHEP2008 Galina Pakhlova, ITEP

  35. X(2175) strange analog of Y(4260)? • X(2175)→φ f0(980), φη(confirmed by BESII and Belle) PRD74, 091103 (2006) hep-ex/0808.0006

  36. Hadronic x-sections • From CLEO: scan at 3.97-4.26GeV in 12 points • Total hadronic x-section above DD from BES • Belle: sum of all measured exclusive contributions (3770) (4160) Y(4008) Y(4350) (4415) Y(4260) Y(4660) (4040) Durham Data Base

  37. Is X(3872) a cc state ?

  38. Yb counterpart ? J. Brodzicka @ PIC08 Process Yield σ(pb) BF(%) Г(MeV) “Y(5S)”→Y(1S)ππ 325±20 1.6±0.1±0.1 0.53±0.03±0.05 0.59±0.04±0.09 “Y(5S)”→Y(2S)ππ 186±15 2.3±0.2±0.3 0.78±0.06±0.11 0.85±0.07±0.16 “Y(5S)”→Y(3S)ππ 10±4 1.4±0.5±0.2 0.48±0.18±0.07 0.52±0.20±0.10 • M(ππ) and cosθhel studied Brown-Cahn (CLEO) model (grey) generic phase space (open)

  39. How to identify B meson signal ΔE Mbc ΔE Mbc • Advantage of e+e-→(4S) → BBkinematics: m(4S)~mB+mB no accompanying particles → EB=Ebeam=√s/2in cms • kinematical variables used in B-Factories Mbc= √E2beam- p2B beam-constrained mass (signal at mB~5.28GeV) ΔE=EB- Ebeam cms energy difference (signal peaks at 0) • Resolution improvement (Ebeam is precisely known) • Background separation Example: B0→J/ψ KS

More Related